Neue Markierungssonden im Nanomaßstab

Forscher zeigen Potenzial von modifizierten Aptameren in der superauflösenden Fluoreszenzmikroskopie auf

22.08.2018 - Deutschland

Das Forschungsgebiet von Ralf Jungmann führt ihn in unvorstellbar kleine Sphären. Der Professor für Experimentalphysik an der LMU entwickelt Mikroskopieverfahren, die molekulare Vorgänge auf zellulärer Ebene direkt sichtbar machen können. Dabei werden fluoreszierende Sonden aus kurzen DNA-Strängen an den Ort des Geschehens gebracht, die dort an Proteine binden und diese dadurch sozusagen von selbst zum Leuchten bringen. Diese Methode haben die Forscher DNA-PAINT getauft.

Jungmann/LMU

SOMAmer-basierte Markierungssonden für DNA-PAINT ermöglichen verbesserte Superauflösungsmikroskopie. Oben links: traditionelle beugungsbegrenzte Abbildung von Kernporen in der Kernhülle. Unten rechts: superaufgelöste DNA-PAINT-Aufnahme ermöglicht durch SOMAmer-Sonden.

Eine der größten Herausforderungen für diese sogenannte superauflösende Fluoreszenzmikroskopie sind derzeit die Markierungssonden – sie sind schlicht nicht klein genug. „Wir arbeiten mit einer Ortsauflösung unter zehn Nanometern. Die herkömmlichen Markierungssonden sind dafür viel zu groß. Das hat bislang das ganze Forschungsfeld behindert“, beschreibt Ralf Jungmann den Ausgangspunkt seiner aktuell im Fachjournal Nature Methods veröffentlichten Studie. Darin hat das Team um Jungmann, der auch die Forschungsgruppe Molekulare Bildgebung und Bionanotechnologie am Max-Planck-Institut für Biochemie (Martinsried) leitet, eine neue Methode untersucht, Markierungssonden herzustellen: den Einsatz von sogenannten Aptameren, kleinen aus DNA bestehenden Molekülen, die aufgrund ihrer einzigartigen 3D-Struktur spezifisch an Proteine binden können.

„Die ideale Sonde, um Proteine effizient zu markieren, muss mehrere Voraussetzungen erfüllen“, sagt Sebastian Strauß aus der Arbeitsgruppe von Ralf Jungmann und Erstautor der Veröffentlichung: „Sie muss so klein wie möglich sein und auch zur quantitativen Färbung eingesetzt werden können. Außerdem sollte eine große Bibliothek dieser Sonden verfügbar sein, um möglichst viele unterschiedliche Zielproteine damit markieren zu können.“ Um das Potenzial von Aptameren zu untersuchen, haben die LMU-Physiker mit dem amerikanischen Unternehmen SomaLogic zusammengearbeitet, das für eine andere Anwendung bereits eine große Reihe an modifizierten Aptameren entwickelt hat, die an tausende verschiedene Proteine binden können. In der jetzigen Studie konnten die Forscher das Potenzial dieser modifizierten Aptamere als Markierungssonden am Beispiel von sieben unterschiedlichen Zielproteinen nachweisen.

„Wir gehen davon aus, dass die neue Methode das Feld der superauflösenden Mikroskopie besonders im Hinblick auf die Anwendbarkeit in der Biologie entscheidend voranbringen wird“, sagt Ralf Jungmann. Sein Ziel ist es, mithilfe von DNA-PAINT sehr viele Proteine und deren Interaktionen gleichzeitig zu beobachten. In kommenden Studien wird das Team daher mit der neuen Markierungsmethode ganze Proteinnetzwerke mit hoher Auflösung sichtbar machen. „Wir werden biologische und biomedizinische Fragestellungen angehen, die bislang nicht untersucht werden konnten.“

Originalveröffentlichung

Sebastian Strauss et al.; "Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging"; Nature Methods; 2018

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

5 Produkte
1 White Paper
5 Broschüren
Themenwelt anzeigen
Themenwelt Fluoreszenzmikroskopie

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

5 Produkte
1 White Paper
5 Broschüren