Wie die Information eines gesichteten Weibchens ins männliche Gehirn gelangt
LC10 – die Nervenzelle zum Erkennen und Umwerben von Fliegenweibchen
MPI für Neurobiologie/ Kuhl
Der erste Schritt auf dem Weg zu einer Paarung ist es, den potentiellen Partner zu erkennen. Fruchtfliegenmännchen nutzen dafür ihre Geschmacks- und Geruchsrezeptoren. Wenn so die Art, das Geschlecht und die mögliche Paarungsbereitschaft verifiziert sind, beginnt die Balz: Die Fliegenmännchen richten sich zum Weibchen aus und vibrieren mit dem ihr zugewandten, ausgestreckten Flügel. Dieser „Flügelgesang“ des Männchens während es das Weibchen verfolgt, ist ein essentieller Teil des Paarungsrituals. Wie das Gehirn aus den optischen Reizen jedoch etwas wie "möglicher Partner" extrahiert und ein darauf zielgerichtetes Verhalten koordiniert, ist weitgehend unklar.
Wissenschaftler aus den Abteilungen von Alexander Borst am Max-Planck-Institut für Neurobiologie und Barry Dickson am Janelia Research Campus haben dies nun im Fruchtfliegenhirn untersucht. „Die Sinneszellen im Auge sehen ja nur zweidimensionale Veränderungen in der Lichtintensität in Raum und Zeit“, erklärt Ines Ribeiro, die Erstautorin der Studie. „Daraus muss das Gehirn erst einmal etwas wie die Gestalt einer anderen Fliege herausrechnen und dann die Bewegungen so abstimmen, dass das Verhalten auf das Ziel gerichtete ist. Das ist unglaublich komplex.“
Visuelle Projektionsneuronen im Insektenhirn leiten die vorverarbeiteten Informationen der Augen an Bereiche im Zentralhirn weiter. Einige Arten dieser Visuellen Projektionsneuronen spielen bei Fliegenarten, bei denen die Männchen den Weibchen im Flug folgen, eine Rolle beim Erkennen und Verfolgen des Partners. Diese Nervenzellen könnten somit auch bei der Fruchtfliege eine entsprechende Rolle spielen. Jedoch reagieren die bisher beschriebenen Zelltypen nur auf sehr kleine bewegte Objekte. Da Fruchtfliegenmännchen nah am Weibchen balzen, nimmt ein Weibchen einen großen Teil des Sichtfelds ein. Das wäre zu groß für die bisher beschriebenen Zellen. „Wir haben uns daher auf die Suche nach einem anderen, passenden Nervenzelltyp unter den Visuellen Projektionsneuronen gemacht“, erklärt Michael Drews, der Co-Autor der Studie.
Ein passender Zelltyp schienen die sogenannten LC10-Zellen, über die bisher noch wenig bekannt war. In Verhaltensversuchen konnten die Wissenschaftler zeigen, dass diese Zellen sowohl auf Fliegenweibchen als auch auf entsprechend große, bewegte Objekte reagierten, die sich unabhängig vom Hintergrund bewegten. Tatsächlich waren die LC10-Zellen notwendig, damit die Fliegenmännchen an der Seite eines Weibchens bleiben und ihr den zugewandten Flügel ausstrecken konnten. Die Ergebnisse deuten zudem darauf hin, dass die LC10-Zellen nicht nur die momentane Position eines potentiellen Weibchens erkennen, sondern auch Informationen zu ihrer Geschwindigkeit und Richtung weitergeben. Das könnte nachfolgenden Schaltkreise das Verfolgen des Weibchens erleichtern. Wie oft und ausdauernd die Männchen den Flügel ausstreckten, hing auch von ihrem Erregungsgrad ab. Wurden die sogenannten P1-Nervenzellen, die es nur im männlichen Fliegenhirn gibt, zuvor durch weibliche Pheromone oder auch künstlich aktiviert, erhöhte sich die Effektivität der LC10-Zellen und somit das visuelle Verfolgen und Flügelausstrecken der Männchen.
Die Ergebnisse zeigen, dass der LC10-Zelltyp der Visuellen Projektionsneuronen essentiell und ausreichend ist, um visuell gesteuerte Aspekte des männlichen Balzverhaltens zu steuern. Entsprechend der Visuellen Projektionsneurone erfüllen die Retinalen Ganglienzellen im Wirbeltiergehirn ganz ähnliche Aufgaben. Somit könnten auch unter den Retinalen Ganglienzellen Nervenzellen sein, die eine kausale Verbindung zwischen der optischen Verarbeitung und einem Objekt-gerichtetem Verhalten herstellen. Sei es bei der Balz, dem Beutefang oder anderen Interaktionen.