Oberflächen und Proteinverteilung von Zellen gleichzeitig sehen

Kombination zweier hochauflösender Methoden ermöglicht neue Einsichten in die Funktionsweise von Zellen

30.05.2018 - Deutschland

Wissenschaftler der Ruhr-Universität Bochum (RUB) haben erstmals zwei mikroskopische Methoden kombiniert, die sowohl die Oberfläche einer Zelle als auch die Verteilung eines Proteins in der Zelle mit einer Auflösung im Nanometerbereich sichtbar machen können. Die Verfahren können für lebende Zellen eingesetzt werden. Das eröffnet zum Beispiel die Möglichkeit, Grundlagen der Bildung von Krebsmetastasen oder der Wirkung bestimmter Medikamente genau zu untersuchen.

© RUB, Kramer

Um die Analyse lebender Zellen zu vereinfachen, plant das Team im nächsten Schritt ein kombiniertes Gerät.

Ein erster Schritt

Proteinkomplexe sind wesentlich kleiner als 250 Nanometer und damit für die Lichtmikroskopie nicht im Detail darstellbar. Um dennoch Zugang dazu zu finden, kombinierte die Arbeitsgruppe der RUB stimulierte Emissions-Verarmungs-Mikroskopie (stimulated emission depletion microscopy, STED) und Raster-Ionenleitfähigkeitsmikroskopie (scanning ion conductance microscopy, SICM).

„Die STED-Mikroskopie erlaubt es, die Verteilung eines Proteins hochauflösend zu untersuchen. Die SICM kann die Zellmembran hochauflösend abtasten. So konnten wir die Verteilung des zellulären Proteins Aktin mit der Nanostruktur der Zellmembran in Zusammenhang setzen“, erklärt Philipp Hagemann, Doktorand in der Arbeitsgruppe. „Unsere Ergebnisse sind ein erster Schritt zur hochauflösenden Untersuchung der Oberflächenstruktur, der biochemischen Organisation der Zelle und ihrer umgebenden Membran“, verdeutlicht Dr. Patrick Happel, Leiter der Arbeitsgruppe Nanoskopie.

Die Rolle der Zellmembran verstehen

Die Zellmembran ist eine Fettschicht, die jede einzelne Zelle umgibt und sie somit von ihrer Umgebung abgrenzt. Um mit der Außenwelt zu kommunizieren, besitzen Zellen eine Vielzahl unterschiedlicher Proteine, die in die Zellmembran eingebaut sind und äußere Reize in das Zellinnere vermitteln. „Wie Proteine in der Zellmembran organisiert sind, wie sich ihre Lokalisation verändert und wie diese Änderungen vermittelt werden, ist auch heute noch wenig verstanden“, so Happel. Nicht nur die Proteine in der Zellmembran, auch die Zellmembran selbst ist von großer Bedeutung, da Zellen bei der Wundheilung, während der Entwicklung und auch bei der Ausbildung von Krebsmetastasen ihre Position verändern. Forscher nennen das migrieren.

Die Migration von Zellen läuft zwar in unterschiedlichen Zelltypen unterschiedlich ab, aber immer ist eine Ausdehnung der Zellmembran in Richtung der Bewegung beteiligt. Im Organismus müssen sich migrierende Zellen durch die sehr engen Zwischenräume zwischen anderen Zellen bewegen. Das erfordert erhebliche Verformungen der Zelle, die Ausbildung von Verankerungen der Zellmembran an der vorderen und das Lösen entsprechender Verankerungen an der Rückseite der Zelle. Das Zusammenspiel dieser biochemischen und biophysikalischen Prozesse ist auf molekularer Ebene bisher kaum verstanden, weil es keine Methoden gibt, diese dynamischen Prozesse mit hoher Auflösung über einen längeren Zeitraum zu beobachten.

Kombigerät geplant

„Wir haben die Daten nacheinander an unterschiedlichen Geräten aufgenommen. Dadurch konnten wir zeigen, welche neuen Untersuchungen durch unser Verfahren möglich werden“, erläutert Astrid Gesper, Doktorandin der Arbeitsgruppe.

Um Untersuchungen an lebenden Zellen zu ermöglichen, plant das Team als nächsten Schritt die Entwicklung eines kombinierten Geräts. „Die Kombination der beiden Methoden kann auch Transportprozesse im Detail sichtbar machen, wie sie bei der gezielten Anwendung von Medikamenten über Nanopartikel eine wichtige Rolle spielen“, so Patrick Happel.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

5 Produkte
1 White Paper
5 Broschüren
Themenwelt anzeigen
Themenwelt Fluoreszenzmikroskopie

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

5 Produkte
1 White Paper
5 Broschüren