Wie der Kompass in magnetisch empfindlichen Bakterien funktioniert

19.04.2018 - Deutschland

Bakterien sind ungeheuer vielfältig, nicht nur von Gestalt, sondern auch in ihren Eigenschaften. Magnetotaktische Bakterien können mit Hilfe von magnetischen Nanopartikeln das Erdmagnetfeld „spüren“. Nun hat eine Kooperation aus spanischen Teams und einer Gruppe am Helmholtz-Zentrum Berlin den inneren Kompass in Magnetospirillum gryphiswaldense an der Synchrotronquelle BESSY II untersucht.  Die Ergebnisse können für die Entwicklung von biomedizinischen Anwendungen wie Nanorobotern und Nanosensoren nützlich sein.

10.1039/C7NR08493E

Die magnetischen Nanoteilchen bilden im Innern der Zelle eine Kette, zeigt die Elektronenkryotomographie.

Magnetotaktische Bakterien kommen in Gewässern und marinen Sedimenten vor. Magnetospirillum gryphiswaldense gehört zu den Spezies, die sich besonders einfach im Labor zu züchten lassen, und zwar wahlweise mit oder ohne magnetische Nanopartikel im Inneren der Zelle.  „Diese Mikroorganismen sind ideale Testobjekte, um zu verstehen, wie ihr innerer Kompass sich bildet”, erklärt Lourdes Marcano, Doktorandin an der Universidad del Pais Vasco in Leioa, Spanien.

Kette aus Nanoteilchen

Magnetospirillum-Zellen enthalten eine Anzahl von winzigen Magnetit-Teilchen (Fe3O4) mit Durchmessern um die 45 Nanometer. Diese Nanoteilchen, auch Magnetosome genannt, ordnen sich in der Regel zu einer Kette im Innern des Bakteriums an. Diese Kette aus Magnetosomen wirkt als Kompassnadel und richtet sich nach einem äußeren Magnetfeld aus. Dadurch wird auch das Bakterium entlang des Erdmagnetfelds ausgerichtet. „Diese Bakterien existieren mit Vorliebe zwischen sauerstoffreichen und sauerstoffarmen Schichten” sagt Marcano. „Ihr innerer Kompass könnte ihnen helfen, die optimalen Lebensbedingungen zu finden.”

Die spanischen Kooperationspartner untersuchten zunächst die Form der Magnetosomen und ihre Anordnung im Innern der Zelle mit unterschiedlichen Methoden, darunter auch der Elektronenkryotomographie.

Einzelne magnetische Ketten an BESSY II untersucht

An BESSY II untersuchten sie gemeinsam mit dem HZB-Team um Dr. Sergio Valencia isolierte Ketten aus Magnetosomen. Insbesondere wollten sie ermitteln, wie sich die Kette zum magnetischen Feld ausrichtet, das die magnetischen Nanopartikel selbst erzeugen. „Normalerweise benötigt man hunderte von Proben mit unterschiedlich orientierten Magnetosomen-Ketten, um die magnetischen Eigenschaften dieser Bakterien zu charakterisieren“, sagt HZB-Physiker Dr. Sergio Valencia. „Aber an BESSY II können wir mit Hilfe von Photoelektronen-Emissionsmikroskopie (PEEM) und weiteren Methoden die magnetischen Eigenschaften von einzelnen Ketten präzise vermessen.“ Dies eröffnet die Möglichkeit, die Ergebnisse mit theoretischen Vorhersagen zu vergleichen.

Spiralige Form der Ketten

Tatsächlich zeigten die Experimente etwas Überraschendes: Anders als bisher vermutet ist das Magnetfeld der Magnetosomen nicht parallel zur Kette ausgerichtet, sondern leicht schräg dazu. Die theoretische Modellierung der spanischen Partner deutet darauf hin, dass dieser Neigungswinkel dazu führt, dass die Magnetosomenkette eine spiralige Form hat.

Von der Natur lernen

Es sei sehr wichtig, die Mechanismen zu verstehen, die die Form der Kette beeinflussen, betonen die Wissenschaftler. Solche bewährten Erfindungen der Natur könnten als Vorbild und Inspiration dienen. So ließen sich möglicherweise ähnliche Mechanismen für biomedizinische Anwendungen nutzen - zum Beispiel zur Steuerung von Nanorobotern.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller