Details der Schaltung des Ras-Proteins beobachtet
Wie eine bezweifelte Hypothese zur Gewissheit geworden ist
© Mann, Gerwert, Kötting
Wie Krebs entstehen kann
Ras-Proteine funktionieren wie kleine Schalter: Abhängig davon, ob sie Guanosin-Triphosphat (GTP) oder Guanosin-Diphosphat (GDP) gebunden haben, sind sie an- oder ausgeschaltet. Die Bindung an GTP setzt komplexe Signalwege in Gang, die im Zellkern münden und dort die Zellteilung einleiten. Ras-Proteine werden anschließend wieder inaktiviert, indem sie vom gebundenen Molekül Guanosin-Triphosphat eine Phosphat-Gruppe abspalten und so Guanosin-Diphosphat erzeugen.
Wird dieser Prozess gestört, zum Beispiel durch Mutationen im Ras-Protein, verweilt Ras in seinem aktiven Zustand, und es kann sich durch anhaltende Zellteilung ein Tumor bilden. „Mehr als 30 Prozent aller Tumore tragen eine Mutation des Ras-Proteins“, erläutert Dr. Daniel Mann vom Forscherteam. „Die Spaltungsreaktion von GTP in Ras ist also der Schlüssel zum Verständnis zahlreicher Krebsarten.“
Wie viele Wasserstoffe?
Um die GTP-Spaltungs-Reaktion in Ras zu verstehen, brauchen die Forscher ein genaues Bild des Startpunktes, also wie genau GTP gebunden an Ras aussieht. Dazu gehört die Frage, ob die drei Phosphatgruppen des GTP-Moleküls Wasserstoffatome besitzen, da sie als Säure wirken und zum Beispiel gelöst in Wasser ein Wasserstoffatom tragen.
Wasserstoff lässt sich allerdings mit den üblichen Verfahren wie der Röntgenkristallographie meist nicht direkt messen. Die chemischen Reaktionen einer Spaltung von GTP mit oder ohne angebundenen Wasserstoff unterscheiden sich jedoch erheblich. Es wurde bisher allgemein vermutet, dass die Phosphat-Gruppen von GTP gebunden an Ras frei von Wasserstoffatomen sind. Diese Annahme beruht aber nicht auf direkten Messungen, sondern auf der Interpretation von Veränderungen in gemessenen Infrarot- und Kernspinresonanz-Spektren.
Zweifel an verbreiteter Annahme
Neue Untersuchungen mittels Neutronenbeugung an dem GTP-ähnlichen Stoff GppNHp führten kürzlich zu Zweifeln an dieser bisher allgemein akzeptierten Hypothese. Dabei ergaben sich Hinweise darauf, dass GTP möglicherweise doch Wasserstoffatome enthalten könnte. „Das hat alle bisherigen Vorstellungen der GTP-Spaltung in Frage gestellt“, so Privatdozent Dr. Carsten Kötting.
3D-Filme mit subatomarer Auflösung
Die RUB-Forscher führten weitergehende Messungen durch, um erstmals sowohl Infrarotspektren des in der Neutronenbeugung verwendeten GppNHp als auch Spektren des natürlichen GTP in Ras aufzunehmen. Damit war ein direkter Vergleich mit der Neutronenbeugung möglich, aber auch ein Vergleich mit einer Umgebung, die der menschlichen Zelle sehr nahe kommt. „Die gemessenen Infrarot-Daten ermöglichen es, molekulare Reaktionen mit höchster zeitlicher und räumlicher Auflösung zu entschlüsseln“, so Klaus Gerwert. „Allerdings sind die Informationen in Infrarot-Spektren codiert und somit schwer zu interpretieren.“
Für die Dekodierung verwendeten die RUB-Forscher ein Verfahren, um experimentelle Daten wie Infrarot-Spektren und Kernspin-Spektren aus gekoppelten quantenmechanischen/molekularmechanischen Simulationen zu berechnen. „Stimmen die berechneten Spektren mit den experimentell gemessenen überein, können wir die experimentell ermittelten Zahlen in dreidimensionale Filme übersetzen“, so Daniel Mann.
Hypothese bestätigt
Diese Filme haben eine Auflösung jenseits eines Zehntels eines Atomdurchmessers. „Mit dieser Präzision war es dann endlich möglich, den genauen Wasserstoffgehalt von GTP gebunden an das Ras-Protein zu ermitteln: Die Phosphatgruppen von GTP tragen in der Tat keine Wasserstoff-Atome“, fasst Klaus Gerwert zusammen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!