Doppelschlag gegen Tuberkulose
Beta-Lakton stört Mykomembran-Biosynthese und verstärkt Antibiotikawirkung
Christian Fetzer / TUM
Eine der größten Herausforderungen bei der Behandlung lebensgefährlicher Tuberkulose-Infektionen ist die wachsende Zahl von Antibiotika-Resistenzen. Aber auch der Erreger selbst macht es den Medizinern schwer: Seine dichte Mykomembran mindert die Wirkung vieler Pharmaka. Angeführt von Stephan A. Sieber, Professor für Organische Chemie an der TU München, haben Wissenschaftler eine Substanz entdeckt, die gerade den Aufbau dieser Membran empfindlich stört.
Die Mykomembran des Tuberkulose-Erregers Mycobacterium tuberculosis ist eine Lipid-Doppelschicht, die die Zellwand umhüllt und eine äußere Barriere bildet. Ein wesentlicher Strukturbaustein sind Mykolsäuren, verzweigte ß-Hydroxy-Fettsäuren mit zwei langen Kohlenwasserstoffketten. Ähnlich aufgebaute beta-Laktone sollten, so die Hypothese des Teams, sich als Mykolsäure „tarnen“, den gleichen Stoffwechselweg wie diese gehen und die entscheidenden Enzyme blockieren können.
Hilfreicher Störenfried
Im Rahmen einer umfangreichen Suche landete die interdisziplinäre Wissenschaftlergruppe mit dem beta-Lakton „EZ120“ einen Volltreffer. Tatsächlich hemmt es die Biosynthese der Mykomembran und tötet Mykobakterien effektiv ab.
Dr. Johannes Lehmann, Mitarbeiter am Lehrstuhl für Organische Chemie II der TU München, konnte während seiner Promotion mithilfe von Enzymtests und massenspektrometrischen Untersuchungen zeigen, dass der neue Inhibitor vor allem die Enzyme Pks13 und Ag85 blockiert, die eine entscheidende Rolle beim Aufbau der Mykomembran spielen. EZ120 wirkt bereits in geringer Dosis, kann die Mykomembranen gut überwinden und zeigt nur eine geringe Toxizität gegenüber menschlichen Zellen. Wird die Substanz gemeinsam mit bekannten Antibiotika verabreicht, steigert es deren Wirksamkeit erheblich.
„Vancomycin, ein gängiges Antibiotikum, und EZ120 arbeiten hervorragend zusammen“, sagt Prof. Sieber, Inhaber des Lehrstuhls für Organische Chemie II der TUM. „Bei einer gemeinsamen Anwendung lässt sich die eingesetzte Dosis um mehr als das 100-fache reduzieren.“ Die Wissenschaftler vermuten, dass die Schwächung der Mykomembran die Antibiotika leichter in die Bakterien eindringen lässt. Dies könnte ein Ansatzpunkt für neuartige Tuberkulose-Therapien sein.
Originalveröffentlichung
Johannes Lehmann, Tan-Yun Cheng, Anup Aggarwal, Annie S. Park, Evelyn Zeiler, Ravikiran M. Raju, Tatos Akopian, Olga Kandror, James C. Sacchettini, D. Branch Moody, Eric J. Rubin und Stephan A. Sieber; "An Antibacterial ß-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis"; Angewandte Chem Int Edition; 2017
Meistgelesene News
Originalveröffentlichung
Johannes Lehmann, Tan-Yun Cheng, Anup Aggarwal, Annie S. Park, Evelyn Zeiler, Ravikiran M. Raju, Tatos Akopian, Olga Kandror, James C. Sacchettini, D. Branch Moody, Eric J. Rubin und Stephan A. Sieber; "An Antibacterial ß-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis"; Angewandte Chem Int Edition; 2017
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.