DNA unter Spannung - Moleküle lösen sich auf Knopfdruck von Oberflächen

23.12.2009 - Deutschland

Mit seiner extrem feinen Nadelspitze kann ein Rasterkraftmikroskop (AFM) ein einzelnes Molekül aufnehmen und untersuchen. Dies nutzten Biophysiker des Exzellenzclusters Nanosystems Initiative Munich (NIM) am Lehrstuhl von Professor Hermann Gaub, LMU, um zu Messen, wie fest DNA-Moleküle auf bestimmten Oberflächen haften. Dabei stellten sie fest, dass elektrische Spannung beeinflussen kann, ob ein Molekül auf einer Oberfläche haftet oder ob es abgestoßen wird. Die Wechselwirkung zwischen Oberfläche und DNA-Molekül lässt sich so per Knopfdruck steuern, was für viele Methoden in der Bioanalytik eine interessante Perspektive darstellt. Die spannungsabhängige Adhäsion gilt zudem nicht nur für DNA-Moleküle, sondern auch für andere Biopolymere wie Proteine oder Polysaccharide.

Für die Untersuchung brachten die Wissenschaftler mit der Spitze des AFM das daran haftende DNA-Molekül in Kontakt mit einer beschichteten Goldelektrode. An diese legten sie nach und nach verschieden große elektrische Spannungen an. Als erstes Forschungsteam bestimmten sie dabei über das AFM, wie viel Kraft nötig ist, um das einzelne Molekül von der Elektrode wieder abzulösen. Das von Natur aus negativ geladene DNA-Molekül haftete dabei fest auf der Oberfläche, wenn diese durch die Spannung positiv geladen war. Auf der negativ geladenen Elektrode konnte das Molekül nicht binden.

Die Anwendungsideen für den entdeckten Effekt gehen weit über den Einsatz in der Analytik hinaus. Eine Zukunftsvision der Münchner Forscher ist ein elektrisch schaltbarer Klebstoff. Während herkömmliche Kleber zumeist nach dem Aushärten irreversible Verbindungen herstellen, ließe sich die Bindekraft mit dieser Methode elektrisch an- und ausschalten.

Die in der Online-Ausgabe der Fachzeitschrift "Nature Nanotechnology" vorgestellte Arbeit entstand im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich" (NIM), das es sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln, zu erforschen und zum Einsatz zu bringen.

Originalveröffentlichung: Matthias Erdmann, Ralf David, Ann Fornof, Hermann E. Gaub; "Electrially controlled DNA adhesion"; Nature Nanotechnology online, 20. Dezember 2009

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...