Die Masse macht's: DNA- und Gift-Analyse zur Verbrechensbekämpfung
Im Forschungsprojekt dnatox werden Erbgut-Spuren und Toxine „abgewogen“. Neuartige Nutzung der Massenspektrometrie
Für das Erstellen von DNA-Profilen ist diese Technologie bisher noch nicht im Routine-Einsatz. Sie bietet aber große Vorteile, wie Prof. Walther Parson von der Gerichtsmedizin Innsbruck und Teilbereichsleiter von dnatox nachweisen konnte. Mit ihrer Hilfe können genetische Fingerprints von Straftätern mit größerer Sicherheit zugeordnet werden.
Täterprofile genauer unterscheiden
Es gibt DNA-Regionen, in denen sich einzelne Menschen sehr stark unterscheiden. DNA-Fragmente aus diesen Regionen, sogenannte Short Tandem Repeats (STRs), werden daher als Marker zur Identifikationsfeststellung verwendet. Bei der herkömmlicherweise in der Forensik angewandten Analyse-Methode, der Kapillarelektrophorese, werden etwa 10 STRs anhand ihrer Länge unterschieden und zugeordnet - daraus ergibt sich der individuelle genetische Fingerabdruck eines Menschen. Derartige DNA-Profile von Tatverdächtigen und Straftätern werden in Datenbanken gespeichert und können mit neuen Tatort-Spuren verglichen werden. Je größer allerdings die Datenbank, desto höher ist die Wahrscheinlichkeit eines rein zufälligen „Treffers“. Es ist daher von großem Nutzen, die individuellen Unterschiede in den DNA-Profilen noch genauer als bisher zu unterscheiden. In diesem Punkt bietet das in dnatox erarbeitete Verfahren große Vorteile. Mit seiner Hilfe können die Gerichtsmediziner zusätzlich zu den Längenunterschieden auch Unterschiede in der Zusammensetzung der STRs erkennen. DNA besteht aus vier genetischen Bausteinen, den Nukleotiden, die sich in ihrer molekularen Masse unterscheiden. Zwei DNA-Stücke gleicher Länge unterscheiden sich daher in ihrer Masse, wenn ein Nukleotid - zum Beispiel durch eine Mutation - gegen ein anderes ausgetauscht wird.
Die Suche nach dem Unbekannten
Dieselbe Technologie hat sich auch im zweiten Teilbereich von dnatox unter Leitung von Dr. Herbert Oberacher bewährt. Der Innsbrucker Gerichtsmediziner steht immer wieder vor der Aufgabe, unbekannte Giftstoffe, beispielsweise in Köperflüssigkeiten von Verbrechensopfern, nachweisen zu müssen. Für diese Aufgabe wird herkömmlicherweise ein gekoppeltes Verfahren von Gaschromatographie und Massenspektromterie verwendet (GC/MS). Dieses Verfahren ist aber für Toxine, die nicht flüchtig sind und sich beim Erhitzen leicht zersetzen, problematisch. Für diese Giftstoffe bietet sich eine andere Analysetechnik an, die gekoppelte Flüssigkeitschromatographie/Massenspektrometrie (LC/MS). Dieses Verfahren hatte bisher aber den Nachteil, dass keine standardisierten Datenbanken existierten. Oberacher ist es im Rahmen von dnatox gelungen, eine intelligente und robuste Referenz-Datenbank aufzubauen, mit der Giftstoffe unabhängig vom verwendeten Gerätetyp und den exakten Versuchsbedingungen identifiziert werden können. Auch wurde die Technologie insgesamt soweit optimiert, dass sie nun als Ergänzung zur herkömmlichen GC/MS zur Verfügung steht. Dadurch wird das Spektrum von Substanzen, die bei der Suche nach unbekannten Gefahrstoffen identifiziert werden können, beträchtlich erweitert.
Dnatox wurde von Prof. Richard Scheithauer, dem Direktor des Instituts für Gerichtliche Medizin der Medizinischen Universität Innsbruck, geleitet und von CEMIT Center of Excellence in Medicine and IT in Innsbruck gemanagt. Es läuft Ende Dezember aus. „Im Projekt dnatox ging es darum, die wissenschaftlichen Grundlagen für die Verwendung neuer technischer Verfahren in der DNA- und Toxin-Analyse zu legen. Dabei sind wir, nicht zuletzt dank der guten Zusammenarbeit der Projektpartner aus Wissenschaft, Wirtschaft und Behörden, ein gutes Stück vorangekommen“, bilanziert Scheithauer den erfolgreichen Verlauf des Projekts. Die Entwicklung massenspektrometrischer Methoden in der Forensik soll in zukünftigen Projekten weitergeführt werden.
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!
Themenwelt Gaschromatographie
Die Gaschromatographie ist eine essentielle Methode in der analytischen Chemie zur Trennung und Analyse von flüchtigen Verbindungen. Durch ihre hohe Auflösung und Empfindlichkeit hat sie sich in Bereichen wie der Umweltanalytik, der Lebensmittelchemie oder der forensischen Wissenschaft fest etabliert. Die GC liefert präzise und zuverlässige Ergebnisse und ermöglicht tiefe Einblicke in die chemische Zusammensetzung von Proben.
Themenwelt Gaschromatographie
Die Gaschromatographie ist eine essentielle Methode in der analytischen Chemie zur Trennung und Analyse von flüchtigen Verbindungen. Durch ihre hohe Auflösung und Empfindlichkeit hat sie sich in Bereichen wie der Umweltanalytik, der Lebensmittelchemie oder der forensischen Wissenschaft fest etabliert. Die GC liefert präzise und zuverlässige Ergebnisse und ermöglicht tiefe Einblicke in die chemische Zusammensetzung von Proben.