Gene lernen aus Stress

Frühgeburtliche Traumata haben lebenslange Wirkung auf Gedächtnisleistung, Emotion und Antrieb

11.11.2009 - Deutschland

Mäuse, die nach der Geburt kurz von ihrer Mutter getrennt werden, weisen eine veränderte Regulierung bestimmter Gene auf, wie Wissenschaftler des Max-Planck-Instituts für Psychiatrie in einer neuen Studie gezeigt haben. Dies wird durch die Anlagerung einfacher chemischer Signalflaggen an die Erbsubstanz, so genannte epigenetische Markierungen, hervorgerufen. Infolgedessen bilden die Mäuse vermehrt Stresshormone und können mit belastenden Situationen schwer umgehen. Die neuen Erkenntnisse dokumentieren wie Umweltfaktoren auf unsere Gene einwirken und eröffnen ein besseres Verständnis für die Entwicklung von stressbedingten Erkrankungen wie z.B. der Depression.

Dass Belastungen in der frühen Kindheit das Risiko erhöhen, an schweren Depressionen und Angststörungen zu erkranken, ist seit langer Zeit auch beim Menschen bekannt. Der molekulare Mechanismus dahinter war allerdings bisher ungeklärt. Die Forscher um Dietmar Spengler zeigen nun in ihrer neuen Studie an Mäusen, wie Stress dauerhafte Veränderungen der Erbsubstanz hervorrufen kann. Traumatisierte Tiere können sich ihr Leben lang nur schlecht an anstrengende Situationen anpassen, Gedächtnis, Antrieb und Emotion sind gestört. Die Stresshormone sind erhöht, weil in ihrem Gehirn das Eiweißmolekül Vasopressin überproduziert wird. Vasopressin ist ein Schlüsselfaktor für die Steuerung von Stresshormonen, Gedächtnis, Emotion und Sozialverhalten. Auf der Suche nach dem Auslöser für diese Überproduktion von Vasopressin stießen die Wissenschaftler bei DNA-Analysen auf einen Genabschnitt, dessen Modifizierung durch Methylgruppen die Aktivierung des Vasopressin-Gens hemmt. Dieser Aus-Schalter fehlt in den nachgeburtlich gestressten Mäusen und führt zu einer lebenslangen Überproduktion des Botenstoffes.

Wie Gene und Umwelteinflüsse in Wechselwirkung treten, ist Gegenstand des immer wichtiger werdenden Forschungsfeldes der Epigenetik. Zahlreiche Forschungsergebnisse zeigen, dass erworbene Informationen die Gebrauchsanweisung liefern, wie das Erbgut genutzt wird. Die Regulierung von Genen ist oft entscheidender als ihre bloße Ausstattung. Methylgruppen spielen dabei als Signalflaggen auf den DNA-Strängen eine wichtige Rolle. Sie ermöglichen das Andocken von Eiweißstoffen an die DNA. Im Zusammenspiel mit diesen methylbindenden Proteinen schalten sie Gensequenzen dauerhaft aus. Das Entscheidende: Die Markierungen bleiben stabil, selbst wenn sich die Zelle teilt, sie werden von der Mutterzelle an die Tochterzellen weitergegeben. Gleichzeitig können sie sich durch einschneidende Erlebnisse im Laufe des Lebens verändern, wie auch die neue Studie zeigt.

Während der Trennung von ihren Müttern war in den Mäusen die Gehirnregion des Hypothalamus übermäßig aktiv, welche für die Stressbewältigung wichtig ist. Diese erhöhte Aktivität führte zu den Modifizierungen der Erbsubstanz in deren Folge das Gen für Vasopressin nun häufiger abgelesen wurde. Die belastende Erfahrung während der wichtigen Entwicklungsphase hatte sich langfristig in ihrer Erbsubstanz festgeschrieben. Florian Holsboer, Direktor des Max-Planck-Instituts in München, führt dazu aus: "Unsere Studie dokumentiert, wie sich Umwelteinflüsse über epigenetische Mechanismen auf die molekulare Ebene unseres Genoms niederschlagen. Früh erlittene schwere Belastung kann die Entwicklung krankmachender Prozesse einleiten, die sich später in Angsterkrankungen und Depression manifestieren. Das Verständnis dieser epigenetischen Kodierung wird zum zukünftigen Schlüssel neuer Behandlungsstrategien", so der Wissenschaftler.

Originalveröffentlichung: Chris Murgatroyd et al.; "Dynamic DNA methylation programs persistent adverse effects of early-life stress"; Nature Neuroscience, Online-Vorabpublikation, 8. November 2009

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!