Genetic link discovered between circadian rhythms and mood disorders
The researchers found that one of these areas contained the gene Neurofascin, which binds to the protein product of a well-known candidate gene for bipolar disorder (Ankyrin G), suggesting a direct biological link between circadian disruption and severe mood disorder. Genetic loading for circadian disruption was also significantly associated with mood instability.
For the study, the researchers used genetic information and activity data from 71,500 participants in the UK Biobank cohort to obtain an objective measure of daily rest-activity rhythms, called relative amplitude. This measure was used in comparing gene variants carried by individuals with and without low relative amplitude to identify potential genetic associations with several mood disorder features, including mood instability, neuroticism, depression and bipolar disorder.
Finding genes for low relative amplitude suggests that disrupted rest-activity cycles have a biological basis, and are not simply the result of random or environmental circumstances. It also implies that the link between disrupted rest-activity cycles and mood disorders may originate in the action of such genes.
Daniel Smith, Professor of Psychiatry and senior author, said “These new findings extend our understanding of the complex genetic architecture of rest-activity cycles and how these might relate to mood instability, neuroticism, depression and bipolar disorder. Ultimately, our goal is to use this genetic information to develop and efficiently target or stratify new and improved treatment options.”
Original publication
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.