Nanoparticles for 3-D printing in water open door to advanced biomedical materials

03-Aug-2017 - Israel

Researchers at the Hebrew University of Jerusalem's Center for Nanoscience and nanotechnology have developed a new type of photoinitiator for three-dimensional (3D) printing in water. These novel nanoparticles could allow for the creation of bio-friendly 3D printed structures, further the development of biomedical accessories, and drive progress in traditional industries such as plastics.

Adapted with permission from Pawar et al., Nano Lett. DOI: 10.1021/acs.nanolett.7b01870. Copyright (2017) American Chemical Society.

Hybrid nanoparticles as photoinitiators. a. Electron microscope image of hybrid nanocrystal. The inset shows a schematic of semiconductor nanorod with a metal tip. b. Bucky ball structure produced by rapid 3-D printing in water using HNPs as photoinitiators. c. Spiral printed with HNPs by two photon printer providing high resolution features.

3D printing has become an important tool for fabricating different organic based materials for a variety of industries. However, printing structures in water has always been challenging due to a lack of water soluble molecules known as photoinitiators -- the molecules that induce chemical reactions necessary to form solid printed material by light.

Now Prof. Uri Banin and Prof. Shlomo Magdassi at the Hebrew University's Institute of Chemistry describe an efficient means of 3D printing in water using semiconductor-metal hybrid nanoparticles (HNPs) as the photoinitiators.

3D printing in water opens exciting opportunities in the biomedical arena for tailored fabrication of medical devices and for printing scaffolds for tissue engineering. For example, the researchers envision personalized fabrication of joint replacements, bone plates, heart valves, artificial tendons and ligaments, and other artificial organ replacements.

3D printing in water also offers an environmentally friendly approach to additive manufacturing, which could replace the current technology of printing in organic based inks.

Unlike regular photoinitiators, the novel hybrid nanoparticles developed by Prof. Banin and Prof. Magdassi present tunable properties, wide excitation window in the UV and visible range, high light sensitivity, and function by a unique photocatalytic mechanism that increases printing efficiency while reducing the amount of materials required to create the final product. The whole process can also be used in advanced polymerization modalities, such as two photon printers, which allows it to produce high resolution features.

Original publication

Other news from the department science

These products might interest you

Eclipse

Eclipse by Wyatt Technology

FFF-MALS system for separation and characterization of macromolecules and nanoparticles

The latest and most innovative FFF system designed for highest usability, robustness and data quality

DynaPro Plate Reader III

DynaPro Plate Reader III by Wyatt Technology

Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)

Efficiently characterize your sample quality and stability from lead discovery to quality control

particle analyzers
Loading...

Most read news

More news from our other portals

So close that even
molecules turn red...