Nanoparticles for 3-D printing in water open door to advanced biomedical materials
Adapted with permission from Pawar et al., Nano Lett. DOI: 10.1021/acs.nanolett.7b01870. Copyright (2017) American Chemical Society.
3D printing has become an important tool for fabricating different organic based materials for a variety of industries. However, printing structures in water has always been challenging due to a lack of water soluble molecules known as photoinitiators -- the molecules that induce chemical reactions necessary to form solid printed material by light.
Now Prof. Uri Banin and Prof. Shlomo Magdassi at the Hebrew University's Institute of Chemistry describe an efficient means of 3D printing in water using semiconductor-metal hybrid nanoparticles (HNPs) as the photoinitiators.
3D printing in water opens exciting opportunities in the biomedical arena for tailored fabrication of medical devices and for printing scaffolds for tissue engineering. For example, the researchers envision personalized fabrication of joint replacements, bone plates, heart valves, artificial tendons and ligaments, and other artificial organ replacements.
3D printing in water also offers an environmentally friendly approach to additive manufacturing, which could replace the current technology of printing in organic based inks.
Unlike regular photoinitiators, the novel hybrid nanoparticles developed by Prof. Banin and Prof. Magdassi present tunable properties, wide excitation window in the UV and visible range, high light sensitivity, and function by a unique photocatalytic mechanism that increases printing efficiency while reducing the amount of materials required to create the final product. The whole process can also be used in advanced polymerization modalities, such as two photon printers, which allows it to produce high resolution features.
Original publication
Most read news
Other news from the department science
These products might interest you
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.