Reactive oxygen species switch immune cells from migratory to murderous
How do these microscopic avengers transition from silent, patrolling responders to merciless killing machines?
Researchers from the University of Illinois at Chicago, the National Institutes of Health and Fudan University in Shanghai have found that the key is a receptor molecule in the cell that senses reactive oxygen species. The finding is published in the journal Developmental Cell.
Reactive oxygen species, or ROS, are produced by the body as a byproduct of metabolism. They are harmful to cells at high levels, because they can bond to and damage molecules that the cell relies on, like DNA.
A receptor called TRPM2 acts as an ROS sensor or gauge inside the neutrophil. When ROS levels are low, the neutrophil is on the move, looking for infections to fight. As the neutrophil nears a wound site and begins to encounter foreign particles or bacteria, it engulfs them and generates a killing burst of ROS to destroy the captured enemy. TRPM2 senses these consistent, high levels of ROS inside the cell and puts the neutrophil in park, so the cell stays in place to continue killing invading microbes.
"The neutrophil senses a dramatic increase in reactive oxygen species as it gets closer to the wound site, and this triggers the shutdown of the migration of the cell," said Jingsong Xu, assistant professor of pharmacology in the UIC College of Medicine and corresponding author on the paper.
"Once the neutrophil ceases moving, it just kills one bacteria or pathogen after another -- and can concentrate on doing its job of cleaning up the site," Xu said.
To shut down migration, TRPM2 must be chemically oxidized, which is what happens when it is exposed to reactive oxygen species. In its oxidized state, TRPM2 binds to another receptor called FPR1, which inactivates the signaling process that causes neutrophils to wander.
Drugs that target the TRMP2 receptor could be useful in preventing the migration of too many neutrophils to a wound site, Xu said.
"Too many neutrophils in a small area can actually damage tissue," he said.
Most read news
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.