Team creates a more durable protein hydrogel based on elastic silk-like protein
Hydrogels are a 3D network composed of hydrophilic polymer and have excellent swelling property which can absorb ten to thousand times of its dry weight in water. The water-capturing capacity of hydrogels have soft and rubber-like flexibility, and are a constant nutrient supply to cells. These advantages allow hydrogels to be developed as an extracorporeal bio-artificial organ, space filling material, and delivery vehicle. However, hydrogels have some limitations in handling, sterilization, and mechanical property. Among them, poor mechanical property has been considered as the one distinct drawback in hydrogel research.
Based on the team's finding, the sea anemone-derived DNA was inserted in E. coli system for mass production because E. coli grows fast and produces protein better than sea anemone. This recombinant protein is named aneroin and is composed of amino acids, and among them, tyrosine is one of the rich amino acids in aneroin. Using abundant tyrosine residues, tyrosine-tyrosine (dityrosine) interaction was promoted for a mechanically improved hydrogel because dityrosine-linkage contributes to durable structures in nature including the jumping pad of dragonflies and fertilization membranes of sea urchin.
Through a photo-initiated dityrosine crosslinking method, the aneroin solution was transformed into a 3D hydrogel-based scaffold in a few seconds. Mechanically, the aneroin hydrogel exhibited significantly stronger and stiffer properties than those of collagen, gelatin, and elastin, which have already been widely exploited as hydrogel materials. It also exhibited approximately 4-fold stronger mechanical properties compared with silkworm silk.
Biologically, the aneroin hydrogel provided an adequate environment for cell growth. Mammalian cells inside the hydrogel proliferated well with an appropriate cell size and healthy morphology. Dead cells were barely detectable in the hydrogel. The mechanically durable and biologically favorable aneroin hydrogel shows clear advantages and could be used in various biomedical applications, especially for cell-containing biomaterials, cell-carrier patches, bio-artificial grafts, and burn dressing materials.
Original publication
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.