Some large molecules sneak across skin on their own
The researchers report that the unique structure of Avicins, which is comprised of sugar residues linked to a fat-soluble core allows the molecules to gain access to the fatty component of the stratum corneum, the outermost layer of skin, which serves as a barrier for molecules to penetrate. The researchers studied penetration of various fragments of Avicins and discovered that the sugar residues of Avicins play a key role in allowing the molecules to move into and across the stratum corneum.
The findings of the study may open new opportunities in the delivery of therapeutic drugs via skin patches. Delivery of therapeutics across the skin offers many advantages, including ease of administration compared to pills and lack of pain in contrast to needle injections. However, transdermal delivery of drugs has proved challenging as the stratum corneum allows the passage of only small, oil-soluble molecules such as nicotine and estrogen. The insights gained from penetration of Avicins across the skin might provide design strategies for novel approaches to transport large molecules across the skin.
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.