How to model a pain reliever
New results can help scientists understand the working mechanism of anesthetics
The computer modeling needed to gain insights into the working mechanism of these systems is rather difficult. Owing to their non-covalent nature, the interactions that contribute to the final shape of the anesthetic are very small compared to the total energy of the molecule. The methods applied by Fernández and co-workers on small- or medium-sized systems have allowed them to evaluate the magnitude and quality of different possible non-covalent interactions among a set of selected molecules. Their approach can even be used to describe very large systems with reasonable accuracy. The mass-resolved detection has yet another advantage: it discriminates between the numerous aggregates formed in the beam, isolating them in different mass channels. Fernández explains: "Several lasers are used to collect data on the structures of the aggregates. These results are then compared with the calculations performed on the system, allowing for the precise determination of the structure of the aggregates."
In this study, Fernández and co-workers have focused on the homodimer of the widely used general anesthetic propofol and its complex with one water molecule. "The calculations predict hundreds of possible conformations for the aggregates—each conformation indicates a different way in which the molecules can interact", Fernández says. "However, the experiments demonstrate that only two [conformations] are stable for the dimer and three for the complex containing water." Despite the small size and simplified nature of the system studied, the results obtained by this approach provide an accurate simulation of experimental observations, and are an important step towards understanding the many interactions that propofol experiences when injected into a living being.
Original publication
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.