Researchers ID microbe responsible for methane from landfills
Specifically, the researchers found that an anaerobic bacterium called Methanosarcina barkeri appears to be the key microbe.
"Landfills receive a wide variety of solid waste, and that waste generally starts out with a fairly low pH level," says Dr. Francis de los Reyes, an associate professor of civil engineering at NC State and co-author of a paper describing the research. "The low pH level makes it difficult for most methanogens – methane-producing organisms – to survive. We started this project in hopes of better understanding the mechanism that raises the pH level in landfills, fostering the growth of methanogens."
What the researchers found was M. barkeri – a hearty methanogen that can survive at low pH levels. M. barkeri consumes the acids in its environment, producing methane and increasing the pH levels in its immediate area. This, in turn, makes that area more amenable for other methanogens.
As moisture leaches through the landfill, it disseminates those high pH levels – making other parts of the landfill habitable for M. barkeri and other methane-producing microbes. M. barkeri then moves in and repeats the process, leaving neutral pH levels – and healthy populations of other methanogens – in its wake.
Since M. barkeri and its methanogen cousins produce large quantities of methane, and methane is a powerful greenhouse gas, this could be bad news for the environment. But not necessarily. Methane can be, and often is, collected at landfill sites and used for power generation. Furthermore, methanogens break down solid waste as they go, compacting it so that it takes up less space.
"The research community can use our findings to explore ways of accelerating the methane-generation process," de los Reyes says, "creating methane more quickly for power generation, and making additional room in the landfill for waste disposal."
Original publication
"Effect of Spatial Differences in Microbial Activity, pH, and Substrate Levels on Methanogenesis Initiation in Refuse,"; Applied and Environmental Microbiology.
Most read news
Original publication
"Effect of Spatial Differences in Microbial Activity, pH, and Substrate Levels on Methanogenesis Initiation in Refuse,"; Applied and Environmental Microbiology.
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.