Fungal infection: A protein weakens the immune system
Aspergillus fumigatus uses a surface protein of its spores to slow down the human immune system
The mold Aspergillus fumigatus produces an enzyme on the surface of its spores with which it can attenuate the human immune response. This makes it easier for for the fungus to colonize human tissue with severe courses of infection. An international research team has now published the results in Nature Microbiology.
Aspergillus fumigatus is a mold that is found all over the world. Unlike closely related species, it can cause serious, often fatal infections in humans. What makes A. fumigatus so dangerous? An international research team led by Gustavo Goldman from the University of São Paulo in Brazil has found clues to the cause: a special enzyme on the surface of the fungal spores – glycosylasparaginase – apparently suppresses the release of pro-inflammatory substances by immune cells, making it easier for the pathogen to spread unhindered in the tissue.
“Gustavo Goldman’s group was particularly interested in the surface proteins on the spores, as these are the first to come into contact with the immune system – usually through inhalation,” reports Olaf Kniemeyer from the Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), the German partner of the study. Kniemeyer is a proteomics expert. Together with his team, he analyzes all the proteins in a cell and assigns functions to them. This is how he finds potential targets for new active substances. The researchers from Jena also specialize in phagocytosis, a defence mechanism in which immune cells devour foreign invaders. This also enabled the international research team to study the interaction of the fungus with immune cells.
An enzyme interferes with the signal
In the current study, they used an approach called trypsin shaving: with the help of trypsin, a protein-cleaving enzyme, they removed all proteins from the spore surface and analyzed their fragments in a mass spectrometer. Using database comparisons, they were able to identify 62 proteins that only occur on the spores of Aspergillus fumigatus, but not on closely related species. Some of them could therefore play a role in the infection process. To test this, the researchers created a knockout library with 42 mutants of the fungus, in each of which a gene coding for one of these proteins was switched off. The mutant that lacked the glycosylasparaginase triggered an increased release of interleukin-1β in immune cells. Interleukins are highly effective proteins that trigger fever, inflammation and a range of other immune reactions even in the smallest of quantities, thus boosting the body’s defense against pathogens. If the glycosylasparaginase on the fungal spores is missing, the immune system can release more of this inflammatory substance. Immune cells are activated and are better able to fight off the fungus. Conversely, this indicates that the glycosylasparaginase produced by the fungus normally helps to dampen the immune response. This allows the fungus to infect the body almost unhindered.
The study in the mouse model supports this hypothesis: in mice with an intact immune system, the fungus was attacked more strongly by the immune system when the gene for glycosylasparaginase was previously switched off. “The glycosylasparaginase on the spores of Aspergillus fumigatus therefore plays a role in the fight against the immune system. However, we cannot yet say exactly how this mechanism works,” says Kniemeyer, summarizing the results of the study.
The findings can help to develop new therapies for infections with Aspergillus fumigatus. This is urgently needed, as there are currently only a few effective drugs to combat fungal infections and resistance to them is gradually spreading.
The research work is a demonstration of successful cooperation between institutes and clinics in several countries. In addition to the Brazilian and German researchers, British and US colleagues also contributed significantly to the new findings.
Original publication
Camila Figueiredo Pinzan, Clara Valero, Patrícia Alves de Castro, Jefferson Luiz da Silva, Kayleigh Earle, Hong Liu, Maria Augusta Crivelente Horta, Olaf Kniemeyer, Thomas Krüger, Annica Pschibul, Derya Nur Cömert, Thorsten Heinekamp, ... Adiyantara Gumilang, Antonis Rokas, Sara Gago, Thaila F. dos Reis, Gustavo H. Goldman; "Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation"; Nature Microbiology, 2024-8-27
Original publication
Camila Figueiredo Pinzan, Clara Valero, Patrícia Alves de Castro, Jefferson Luiz da Silva, Kayleigh Earle, Hong Liu, Maria Augusta Crivelente Horta, Olaf Kniemeyer, Thomas Krüger, Annica Pschibul, Derya Nur Cömert, Thorsten Heinekamp, ... Adiyantara Gumilang, Antonis Rokas, Sara Gago, Thaila F. dos Reis, Gustavo H. Goldman; "Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation"; Nature Microbiology, 2024-8-27
Topics
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents
Merck Ignites Firework of Research Initiatives During its 350th Anniversary Year - Funding of up to € 350,000 per research grant or up to € 30,000 per research challenge

How CRISPR can help fight against neurodegenerative diseases - Scientists listed ways of applying genetic engineering to treat Parkinson's disease

Stem Cells May Speed Up Screening of Drugs for Rare Cancers

AiCuris and Hybridize Therapeutics enter worldwide license agreement of up to €100M for a direct-acting RNA-based therapy against BK Virus
Removab Approval: Proof-of-Concept for Technology Transfer in Germany

Decoding Blood Platelet Production: The Intricate Role of Lipids - Disruptions in lipid metabolism might affect platelet production

Excessive fluid consumption: habit or hormonal disorder? - Which test provides a reliable diagnosis?

Molecular switch may serve as new target point for cancer and diabetes therapies
HIV/AIDS long-term costs high - and unaffordable to most-affected countries
Part of hagfish slime mystery solved

Effects of chemical mixtures: Neurotoxic effects add up - Study demonstrates for the first time the toxicological relevance of chemical mixtures as they occur in humans
