Does a Mixture of One Million Peptides Hold the Key to the Antibiotics of the Future?
New approach to diminish antibiotic resistance developed by international research team
Researchers from Freie Universität Berlin, the Hebrew University of Jerusalem, and ETH Zurich worked together to investigate if and how Pseudomonas aeruginosa acquires resistance to new antibiotics. According to the World Health Organization, this bacterium is one of the most prevalent pathogens. The researchers’ approach focused on the use of antimicrobial peptides (AMPs), amino acid chains that can be found in all domains of life, to disrupt the evolution of drug resistance in bacteria. These newly developed random antimicrobial peptide mixtures (RPMs) produce “peptide libraries” that contain a cocktail of a million peptide combinations. One such peptide consists of two amino acids that have been assembled at random.
“Over a period of four weeks, which is usually how long treatment lasts for a patient with pneumonia caused by Pseudomonas aeruginosa, we could produce resistance against a wide variety of treatments in our lab experiments. However, we were not able to do so for the random peptide mixture,” says first author of the study Bernardo Antunes, an evolutionary biologist at Freie Universität Berlin. The results of the experiments were further supported by controlled evolution in the lab, genome analyses, and mathematical modeling. “It will still be quite some time before we are ready for practical applications,” says Jens Rolff, one of the principal investigators of the study and biology professor at Freie Universität Berlin. “Still, our current work demonstrates the potential that these combinations have when it comes to reducing antimicrobial resistance.”
Original publication
Original publication
Bernardo Antunes, Caroline Zanchi, Paul R. Johnston, Bar Maron, Christopher Witzany, Roland R. Regoes, Zvi Hayouka, Jens Rolff; "The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is severely constrained by random peptide mixtures"; PLOS Biology, Volume 22, 2024-7-2
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.