Melting reveals drug targets in a living organism
Scientists identify drug targets in blood and organs
Tobias Wüstenfeld
When a drug binds to a protein, the structure of the protein gets tighter and only unfolds at higher temperatures. In this study, Mikhail Savitski – team leader and head of the Proteomics Core Facility at EMBL Heidelberg – and his team, together with a team at Cellzome melted proteins to observe their properties. They were able to get insights into the interactions between multiple proteins, or between proteins and drugs.
"For the first time, we can systematically map drug–protein interactions in a mammalian organism. This global view of the drug targets and potential side-effects is a huge step in drug discovery," explains Mikhail Savitski. By comparing the unwinding temperatures of proteins, the researchers determined which drug connected with which protein.
In 2014, Savitski and Cellzome presented their new thermal profiling technique for the first time, allowing scientists to study cell cultures with heat. While this technology advanced the field, cultured cells differ strongly to a living organism.
The method now published represents a significant advancement for translational research because biological changes can be directly monitored in an organ by measuring protein interactions and activation of cellular pathways. In drug discovery, the ability to monitor the engagement of the pharmacological target in a living organism is fundamental for achieving therapeutic efficacy.
To demonstrate their technique's capabilities, the scientists scanned all proteins in rat liver, lung, kidney, and spleen. Their results provided novel insights into the interactions of proteins and revealed potential drug targets. "For the first time, we can study protein interactions in different tissues of living organisms and how they are affected by external conditions. Our technique could significantly improve our understanding of human diseases and aid the development of successful treatments," says Nils Kurzawa, EMBL scientist in the Savitski group.
Original publication
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.