Aluminum tolerant sorghum
Cloned gene being used to develop aluminum tolerant crops, Kochian says at AAAS
Acidic soils limit crop production in half the world's potentially arable land, mostly in developing countries in Africa, Asia and South America, said Kochian. He hopes that the research will one day help farmers in developing countries significantly boost their crop production and better help feed the hungry.
Kochian, Cornell adjunct professor of plant biology and director of the U.S. Department of Agriculture--Agricultural Research Service Robert W. Holley Center for Agriculture and Health at Cornell, described the work on identifying and characterizing an aluminum tolerance gene in certain lines of sorghum and using molecular breeding techniques to introduce this gene into lines used for sorghum breeding in Africa, at the annual American Association for the Advancement of Science meeting in San Diego.
In his talk, "Fighting Fire With Fire: Plants Tolerate Acid Soils by Releasing Organic Acids," presented at the Getting to the Roots of Agricultural Productivity Symposium, Kochian said that he and Jurandir Magalhaes, Ph.D. '02, of the Embrapa Maize and Sorghum lab in Brazil, started this project for Magalhaes' Ph.D. research at Cornell in Kochian's lab. He added that they have also found evidence for a number of variants of this tolerance gene that underlies the wide variation in sorghum aluminum tolerance.
Aluminum tolerance is found in a small number of sorghum varieties, he said, where this gene encodes a novel membrane transporter protein in the root tip that mediates the release citric acid into the soil when the roots are exposed to aluminum. The citric acid binds aluminum ions and prevents the toxic metal from entering the roots.
Since Kochian and colleagues have identified this gene, they have found evidence for other genes that also play a role in aluminum tolerance, he said. In work led by Magalhaes, the researchers introduced the region of the sorghum genome that harbors their aluminum tolerance gene from a number of tolerant sorghum lines into a common breeding line that is aluminum sensitive. When they did this, a significant degree of the tolerance in the donor line was lost, which strongly suggests that other genes are also needed for full expression and function of their aluminum tolerance gene.
Kochian and Magalhaes are also collaborating with sorghum breeders in Africa to generate genetic markers that will allow them to identify the best versions of their aluminum tolerance gene in African sorghum lines. These same markers will then be used to improve sorghum aluminum tolerance in Africa via molecular breeding techniques.
Kochian's lab has also used this information from sorghum to identify the first aluminum tolerance gene in maize, and in collaboration with Embrapa, similar molecular genetic approaches are being used to improve maize tolerance on acidic soils.
Most read news
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.