How bacteria sense the world
Transduction of signals from the environment is an essential process enabling cells to respond to external stimuli. In many organisms this happens via a process known as the two component system (TCS); a stimulus-response mechanism centred on the interaction of a sensor protein – in this case histidine kinase (HD) – and a response regulator (RR).
In a paper to be published in Structure, the team present an X-ray crystal structure analysis to study this interaction within the bacterium Thermotoga maritima - of interest because of its ability to metabolise carbohydrates such as cellulose and xylan that can be converted to hydrogen.
Analyzing the HK/RR interaction site in detail, they show an interdomain β-sheet between the sensor domain and catalytic domain of histidine kinase (HK), providing crucial clues about the enzyme’s folding structure. They also determined that two molecules of histidine kinase form a dimer, which bonds to two response regulator molecules. Overall, the findings reveal that interaction between HK sensor and catalytic domains act as an on/off “switch” in the TCS, triggering phosphorylation in response to environmental stimuli.
Most read news
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.