Louisiana Tech researchers using nanotechnology in biofuel process to save money, environment
Biofuels will play an important part in sustainable fuel and energy production solutions for the future. The country's appetite for fuel, however, cannot be satisfied with traditional crops such as sugar cane or corn alone. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and has the potential to decrease greenhouse gas (GHG) emissions by 86 percent over that of today's fossil fuels. Current techniques for corn ethanol only reduce greenhouse gases by 19 percent.
The nanotechnology processes developed at Louisiana Tech University can immobilize the expensive enzymes used to convert cellulose to sugars, allowing them to be reused several times over and, thus significantly reducing the overall cost of the process.
Savings estimates range from approximately $32 million for each cellulosic ethanol plant to a total of $7.5 billion if a federally-established goal of 16 billion gallons of cellulosic ethanol is achieved. This process can easily be applied in large-scale commercial environments and can immobilize a wide variety or mixture of enzymes for production.
Most read news
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.