Study shows that a combination of common genetic variations can lead to schizophrenia
The finding, published in Nature, suggests that schizophrenia is much more complex than previously thought, and can arise not only from both rare genetic variants but also from a significant number of common ones.
"This is an enormous first for our field," said co-author Patrick Sullivan, M.D., Ray M. Hayworth and Family Distinguished Professor of Psychiatry in the department of genetics at the UNC School of Medicine. "You could say that we now have the outline of the puzzle, and we just need to take all of these pieces that we have identified and see how they fit them together."
In this study, Sullivan and other investigators in the Consortium used "genechip" technology to identify 30,000 genetic variants (single nucleotide polymorphisms or "SNPs") that were more common in 3,000 individuals with schizophrenia than in 3,000 comparison subjects without schizophrenia. This pattern was found in three separate samples of individuals with schizophrenia and two samples with bipolar disorder – indicating a previously unrecognized overlap between the two diseases. These risk variants were not present in patients with other non-psychiatric diseases, such as hypertension or diabetes.
The researchers are also investigating how genes and environment interact to cause the disease. One additional finding of their study was the identification of the human leukocyte antigen (HLA) locus as a possible risk factor. Because this region plays an important role in immune response to infection, it could suggest that exposure to an infectious agent increases risk of developing psychiatric disease.
Most read news
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.