AMT Receives EMEA Orphan Drug Designation for Acute Intermittent Porphyria

29-May-2009 - Netherlands

Amsterdam Molecular Therapeutics announced that the European Medicines Agency has granted Orphan Drug Designation to AMT’s gene therapy product AMT-021 for the treatment of acute intermittent porphyria (AIP).

Orphan Drug Designation for AIP entitles AMT to ten year market exclusivity in Europe following marketing approval for AMT-021 if this product candidate is the first new drug with a major medical benefit receiving marketing approval for the European Union. The designation also provides for special benefits, including research support, eligibility for protocol assistance and possible exemptions or reductions in certain regulatory fees during development or at the time of application for marketing approval.

"We are proud to have received this Orphan Drug Designation for the treatment of acute intermittent porphyria," said Sander van Deventer, Chief Executive Officer of AMT. "This designation is an important step in the development of a treatment for this seriously debilitating and potentially lethal disease."

Other news from the department research and development

More news from our other portals

All FT-IR spectrometer manufacturers at a glance

See the theme worlds for related content

Topic world Gene therapy

Genetic diseases once considered untreatable are now at the center of innovative therapeutic approaches. Research and development of gene therapies in biotech and pharma aim to directly correct or replace defective or missing genes to combat disease at the molecular level. This revolutionary approach promises not only to treat symptoms, but to eliminate the cause of the disease itself.

View topic world
Topic world Gene therapy

Topic world Gene therapy

Genetic diseases once considered untreatable are now at the center of innovative therapeutic approaches. Research and development of gene therapies in biotech and pharma aim to directly correct or replace defective or missing genes to combat disease at the molecular level. This revolutionary approach promises not only to treat symptoms, but to eliminate the cause of the disease itself.