Design-Algenzellen "arbeiten" als Bioreaktoren
Forscher und Firmen aus der Biotechnologie haben die Mikroorganismen im Blick. Denn in Kleinstlebewesen, etwa in Algen, steckt jede Menge Power - wenn man technisch etwas nachhilft. Bochumer Biologen arbeiten zum Beispiel an der Herstellung von neuen "Design-Algenzellen", die Wasserstoff als natürliche Energie erzeugen und dabei 100mal effektiver sind bisherige Mikroalgensysteme. "Getunte" Algen als Bioreaktor: Das ist ein Beispiel von Hunderten für die vielfältigen Themen der Mikrobiologie, etwa "grüne" und "weiße" Biotechnologie, Grundlagenforschung und industrielle Anwendungen. Einen Querschnitt zeigt die Jahrestagung der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) an der Ruhr-Universität Bochum.
Die umprogrammierte Alge
Algen als Bioreaktoren zu nutzen, ist nicht neu, die moderne Forschung versucht vielmehr, ihre Leistungsfähigkeit zu steigern und so die breite industrielle Anwendung zu ermöglichen. "Wenn wir alle ehrgeizigen Parameter dieses Projekts verwirklichen, ließe sich in Zukunft Biowasserstoff in großen Mengen zu marktfähigen Preisen herstellen", sagt Prof. Dr. Matthias Rögner, Lehrstuhl für Biochemie der Pflanzen der Ruhr-Universität Bochum, der das BMBF-geförderte Projekt auf dem Gebiet der "grünen" Biotechnologie koordiniert. Der Clou des Verfahrens: Die Forscher programmieren den Prozess der pflanzlichen Photosynthese derart um, dass die Algen nicht mehr Biomasse, sondern Bioenergie in Form von Wasserstoff erzeugen. "Diese schrittweise Umgestaltung der Zelle wirkt sich auf den gesamten Stoffwechsel aus und erfordert mehrere Jahre der Optimierung", sagt Prof. Rögner.
Molekulare Werkzeuge für die "weiße" Biotechnologie
Gleich vier Arbeitsgruppen der Bochumer Fakultät für Biologie und Biotechnologie forschen auf dem Gebiet der "weißen" Biotechnologie. Sie optimieren Mikroorganismen für biotechnologische und industrielle Prozesse, damit sich neue Produkte ressourcenschonend herstellen lassen, zum Beispiel Medikamente. Dabei spielen Bakterien und Pilze eine zentrale Rolle. Sie produzieren so genannte Sekundärmetaboliten: Das sind Genprodukte, die der Organismus nicht unbedingt zum Leben braucht, aber unter bestimmten Lebensbedingungen produziert. Die pharmazeutische Industrie beispielsweise nutzt Mikroorganismen, um Sekundärmetabolite wie Antibiotika, Immunsuppressiva oder Statine (Senker des Blutcholesteringehaltes) herzustellen. "Derartige mikrobielle Verfahren sind chemischen Prozessen oft sowohl ökonomisch als auch ökologisch überlegen", sagt Prof. Dr. Ulrich Kück (Allgemeine und Molekulare Botanik). In Zusammenarbeit mit dem Christian Doppler Labor "Biotechnologie der Pilze" entwickeln die Bochumer Forscher "molekulare Werkzeuge", um Mikroorganismen geplant genetisch zu verändern. "Die Produktionsstämme sind in der Regel genetisch instabil und garantieren somit keine reproduzierbaren Ausbeuten bei komplexen industriellen Produktionsprozessen", erläutert Kück.
Grundlagenforschung: Ein Leck im Stickstoffkreislauf
Der Stickstoff-Kreislauf im Meer hat ein Leck: die Anaerobe Ammoniak-Oxidation, kurz Anammox. Dieser von Bakterien verursachte Prozess steht im Zentrum von Marcel Kuypers' Arbeiten, für die er den diesjährigen VAAM-Forschungspreis erhält, dotiert mit 10.000 Euro. Ursprünglich nur aus Bioreaktoren bekannt, wies Kuypers die Anammox-Bakterien auch in der Natur nach. Mittlerweile konnten der Forscher und seine Kollegen am Max-Planck-Institut für Marine Mikrobiologie in Bremen zeigen, dass Anammox einer der Hauptprozesse ist, durch den Stickstoff aus dem Meer entweicht. In sauerstoffarmen Meeresregionen - so genannten Sauerstoffminimumzonen - setzen Anammox-Bakterien Ammoniak zu gasförmigem Stickstoff um, der dann in die Atmosphäre aufsteigt. So verlieren die Meere viele Nährstoffe, denn Stickstoffverbindungen sind der Dünger für Algen und somit die Grundlage für das gesamte Nahrungsnetz im Meer.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren

Flexcell Zelldehnungsbioreaktoren für zelluläre Biomechanik-Anwendungen von Dunn
Flexcell Zelldehnungsbioreaktoren für zelluläre Biomechanik-Anwendungen
Wurde in über 1300 Labors weltweit verwendet und in über 9000 Forschungspublikationen zitiert.

Biostat STR von Sartorius
Biostat STR Bioreaktoren der Generation 3
Entwickelt für ultimative Upstream-Leistung

Ambr® 250 Modular von Sartorius
Mini-Bioreaktoren für Zell- und Gentherapien mit hoher Skalierbarkeit
Maximieren Sie Ihre Prozessentwicklung mit zuverlässigen Einweg-Gefäßen

Ambr® 250 HT Consumables von Sartorius
Effiziente Bioprozesse mit Einweg-Bioreaktoren
Minimieren Sie Reinigungsaufwand und maximieren Sie Flexibilität für Zell- und Mikrobiolkulturen

Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.