Viren bei der Infektion in flagranti festgehalten

Biochemiker erforschen mithilfe der Röntgenstrukturanalyse die Bindung an Zellen

13.05.2008

Bei einer Infektion müssen sich Viren zunächst an Körperzellen binden, um Zugang zu erhalten und die Zelle in Besitz zu nehmen. Die Viren-Zell-Bindung ist der Moment, den der Biochemiker Prof. Thilo Stehle festhalten und genau studieren möchte. Dazu führt er aufwendige Röntgenstrukturanalysen durch. Möglicherweise lässt sich dieser frühe Schritt einer Vireninfektion in ferner Zukunft als Angriffspunkt für Medikamente nutzen.

Thilo Stehle hat sich die Erforschung des ersten Schritts einer Vireninfektion zur Aufgabe gemacht: die Bindung eines Virus an eine Zelle. "Dies wäre theoretisch ein interessanter Angriffspunkt für Medikamente. Bisher kann man ihn aber nicht nutzen, wir sind davon zurzeit auch noch weit entfernt. Unsere Arbeit gehört in die Grundlagenforschung", erklärt der Wissenschaftler. In seiner Arbeitsgruppe werden die an der Viren-Zell-Bindungsstelle beteiligten Proteine gereinigt, kristallisiert und mit Röntgenstrahlen durchleuchtet. Als Ergebnis erhält der Wissenschaftler eine bis auf die Ebene der Atome genaue dreidimensionale Strukturdarstellung der Interaktion.

Zu den Forschungsobjekten in Thilo Stehles Arbeitsgruppe gehören zum Beispiel Adenoviren, die eine Reihe von Infektionen wie Erkältungen oder Magen-Darm-Erkrankungen beim Menschen hervorrufen können. "Infektionen mit Adenoviren sind im Allgemeinen nicht übermäßig gefährlich, aber vor einiger Zeit sind in den USA völlig überraschend eine ganze Reihe von jungen Leuten daran gestorben", sagt der Wissenschaftler. Auch bei Coronaviren, von denen manche Typen beim Menschen Erkältungssymptome auslösen, sei zumindest ein Fall bekannt - das sogenannte SARS-Coronavirus -, in dem von heute auf morgen gefährliche Veränderungen aufgetreten sind, die die Infektion plötzlich tödlich machten. "Wahrscheinlich konnte man die gefährlichen Viren nur so schnell eindämmen, weil in China die infizierten Menschen radikal isoliert wurden", vermutet Stehle. Auch von Mäusen sei ein Tumorvirus bekannt, das bei Austausch eines einzigen Proteinbausteins, einer Aminosäure, keine Tumoren mehr auslöst. Der Forscher ist überzeugt davon, dass manche gefährliche Veränderung bei Viren mit veränderten Bindungseigenschaften zu tun hat, sodass die Viren zum Beispiel neue Gewebetypen angreifen können. Denn die Viren können nicht einfach überall in Zellen eindringen, sondern nur dort, wo sie passende Rezeptoren finden. Daher will Stehle die Viren-Zell-Kontakte eingehend erforschen, um diesen Vorgang in ferner Zukunft für therapeutische Zwecke gezielt stören zu können.

Die Biochemiker machen eine Strukturanalyse der Viren-Zell-Bindung, die bis auf die Ebene der Atome geht. "Für den ganzen Analyseprozess muss man jeweils zwei bis drei Jahre einkalkulieren", sagt Stehle. Die Reinigung der an der Bindungsstelle beteiligten Proteine dauere einige Monate. "Wir können all diese Arbeitsschritte hier im Institutsgebäude machen, bis hin zur Röntgenuntersuchung", sagt Stehle, "allerdings ist es manchmal sinnvoll, noch stärkere Röntgenstrahlen zu nutzen. Im Synchrotron zum Beispiel in Grenoble sind sie bis zu 1000-mal stärker als in Tübingen, dorthin, in die Schweiz oder ans DESY in Hamburg gehen wir öfter mit unseren Proteinkristallen."

Die dreidimensionalen Darstellungen der Viren-Zell-Kontakte lassen erkennen, wie kompliziert der Bindungsvorgang teilweise ist. Nicht immer handelt es sich um das Prinzip von Schlüssel und Schloss, die genau ineinander passen. Vielmehr finden sich auch Klappmechanismen oder eine Art Zwei-Punkt-Bindung, bei der die zweite Bindung erst möglich wird, wenn die erste schon vollzogen ist. "Letztere Art der Bindung findet sich zum Beispiel beim HI-Virus", sagt Thilo Stehle. "Den Viren-Zell-Bindungsvorgang zu blockieren, hat noch niemand geschafft." Bisherige Medikamente zur Behandlung von Vireninfektionen beruhten auf anderen Mechanismen. Zum Beispiel verhindern Neuraminidase-Hemmer, die gegen Grippeviren eingesetzt werden, dass die in den eroberten Zellen produzierten Viren freigesetzt werden. Gegen die Aidserreger, die HI-Viren, werden sogenannte Protease-Hemmer eingesetzt, die ein viruseigenes Werkzeug hemmen. Dadurch fehlen den Viren funktionelle Bauteile, um sich zu vermehren.

Und auch auf einem weiteren Gebiet kann Thilo Stehle zusammen mit seiner Arbeitsgruppe mithilfe der Röntgenstrukturanalyse neue Erkenntnisse gewinnen: der Evolution von Viren. "Grundsätzlich können Viren in der Evolution nicht vor Zellen entstanden sein, da sie ohne Zellen gar nicht vermehrungsfähig wären", sagt Stehle. Er ist zufällig auf eine interessante Gemeinsamkeit bei Adenoviren und Reoviren, die Durchfälle vor allem bei Kindern verursachen, gestoßen. "Die Reoviren tragen außen ein stacheliges Kugelprotein namens Sigma 1, ein Bindungsprotein, das stark einem Bindungsprotein der Adenoviren ähnelt. Die stacheligen Anhänge haben eine ähnliche Struktur, binden auch teilweise an die gleichen Zellrezeptoren. Die beiden Proteine sind evolutionär verwandt", sagt er. Dabei gehören die beiden Viren zu zwei ganz unterschiedlichen Familien mit unterschiedlichem Erbgut: das Adenovirus hat ein DNA-Genom, das Reovirus ein RNA-Genom. Möglicherweise haben die beiden Viren einen gemeinsamen Vorfahren oder sie haben irgendwann untereinander Gene ausgetauscht. "Das kann passieren, wenn zwei Viren dasselbe Gewebe befallen", erklärt Stehle.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...