Freiburger Wissenschaftler legen Studie zum Vitamin-A-Stoffwechsel vor

Kompliziertes Zusammenspiel von Transporter und Rezeptor

07.03.2008

Seit langem ist bekannt, dass sowohl Vitamin A-Mangel wie auch Vitamin A-Überschuss schwere Krankheiten hervorrufen können. Vitamin A hat bei so unterschiedlichen Prozessen wie dem Sehen und der Regulation der Genexpression eine herausragende Bedeutung. Um diese Prozesse aufrechtzuerhalten, muss Vitamin A koordiniert an Zielzellen und Gewebe verteilt werden. Die Haupttransportform für Vitamin A im Blut ist Retinol, welches an das Serum-Retinol-Bindungsprotein (holo-RBP4) gebunden ist. Kürzlich konnte gezeigt werden, dass die zelluläre Aufnahme von Retinol vom holo-RBP4 Komplex vom STRA6 Protein abhängig ist. STRA6 ist ein Zelloberflächenrezeptor, welcher beispielsweise im Retinapigmentepithel der Augen vorhanden ist.

Überraschenderweise haben Mutationen im RBP4 und im STRA6 Gen vollkommen unterschiedliche Konsequenzen für betroffene Patienten. Ein Fehlen von RBP4 führt zu einem relativ milden Vitamin A-Mangel der Augen einhergehend mit Nachtblindheit und Veränderungen der Iris. Im Gegensatz dazu bedingen Mutationen im STRA6 Gen das fatale Matthew-Wood-Syndrom. Dieses Syndrom ist durch schwerwiegende Störungen der Augen-, Herz- und Lungenentwicklung charakterisiert. In ihrer Studie an Humanzellen und im Zebrafischmodell konnten Johannes von Lintig und seine Mitarbeiter am Institut für Biologie I (Freiburg) und am Department of Pharmacology (Case Western Reserve University, Cleveland, U.S.A) STRA6 als einen Vitamintransporter identifizieren. Ihre Ergebnisse werden in Cell Metabolism veröffentlicht.

Fehlt STRA6, werden die Augen von Zebrafischlarven selektiv Vitamin A-defizient, während andere Gewebe unter Vitamin A Überschuss leiden. Dieses Zuviel an Vitamin A bedingt Entwicklungsstörungen wie sie beim Matthew-Wood-Syndrom beschrieben wurden. Diese Fehlbildungen konnten durch eine Reduktion der holo-RBP4 Mengen weitgehend aufgehoben werden. Die Autoren folgern aus ihren Untersuchungen, dass beim Fehlen von STRA6 im Blut zirkulierendes holo-RBP4 das Vitamin-A-Gleichgewicht des Embryos stört. Dieser Mechanismus könnte nicht nur die Pathologie des Matthew-Wood-Syndroms erklären, sondern könnte auch bei der Typ 2 Diabetes eine Rolle spielen. Auch hier sind die Mengen von RBP4 im Blut signifikant erhöht. Deswegen planen die Wissenschaftler in Zukunft ihre Untersuchungen an RBP4- und STRA6-defizienten Mausmodellen fortzuführen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!