Zu kompliziert gedacht?
Neuronale Aktivität kann weit besser vorhersagbar sein, als bisher angenommen
Das Gehirn ist wohl die komplexeste Struktur, die die Evolution je hervorgebracht hat: mehr als 100 Milliarden Nervenzellen kommunizieren über ein weit verzweigtes Netzwerk miteinander. Sie verarbeiten Informationen in Form von elektrischen Impulsen. Jede Zelle verrechnet die Signale der ihr vorgeschalteten Zellen. Wann sie selbst einen Impuls sendet, hängt vom Ergebnis dieser Berechnung ab. Ein solches System neuronaler Signalweitergabe haben Timme und seine Kollegen mathematisch analysiert und ihre daraus abgeleitete Theorie anhand von Computersimulationen überprüft. Wie im Gehirn folgt auch im mathematischen Modell die Dynamik neuronaler Signalweitergabe keiner erkennbaren Ordnung - in scheinbar unvorhersehbarer Weise senden die Nervenzellen Impulse. Aber wie unvorhersehbar ist ein solches System wirklich?
"Chaotisch" nennen Wissenschaftler ein System, in dem geringfügige Unterschiede in den Anfangsbedingungen zu völlig verschiedenen Entwicklung führen können. Das Verhalten chaotischer Systeme lässt sich nicht langfristig vorhersagen. Im Jahre 1996 zeigten Wissenschaftler an der Hebrew University in Israel in einer theoretischen Studie, dass die im Gehirn beobachtete irreguläre neuronale Aktivität ebenfalls durch ein solches chaotisches Verhalten begründet werden kann. Das Netzwerk würde demnach eine ganz andere Dynamik entwickeln, wenn auch nur ein einzelnes Neuron einen Bruchteil einer Sekunde früher oder später ein Signal aussendet. In den letzten zehn Jahren nahmen nun viele Neurowissenschaftler an, dass solch chaotisches Verhalten grundsätzlich auf der beobachteten Irregularität basiert.
Dass dies aber nur unter bestimmten Umständen gilt und längst nicht immer der Fall sein muss, haben Timme und seine Kollegen nun herausgefunden. "Eine Kombination verschiedener neuer Methoden hat es uns ermöglicht, jeden einzelnen Impuls eines Neurons im Netzwerk zu berücksichtigen", so Jahnke. Die Wissenschaftler konnten zeigen, dass ein neuronales Netzwerk unter bestimmten Bedingungen gegenüber kleinen zeitlichen Verschiebungen neuronaler Impulse erstaunlich unempfindlich ist. "Genügend ähnliche Muster neuronaler Aktivität entwickeln keine gänzlich unterschiedliche Dynamik, wie man das von einem chaotischen System erwarten würde, im Gegenteil, sie gleichen sich sogar langfristig aneinander an", sagt Memmesheimer. Im Gehirn könnte dies dazu beitragen, dass bestimmte Aktivitätsmuster hochgradig präzise in der Zeit auftreten, dass also Information in solchen Netzwerken zeitlich exakt verarbeitet wird, Berechnungen genau ausgeführt werden.
Obwohl das Netzwerk unter statistischen Gesichtspunkten sehr irregulär erscheint, muss es sich dabei nicht um ein chaotisches System handeln, es kann vielmehr auch über längere Zeiträume vorhersagbar sein. "Unter welchen Bedingungen das Gehirn nun chaotisch reagiert und wann es ein vorhersagbares Verhalten zeigt, muss noch genauer untersucht werden", so Timme. In jedem Falle ist die Dynamik neuronaler Netzwerke, auch wenn sie hochgradig irregulär ist, nicht immer so kompliziert wie lange gedacht.
Originalveröffentlichung: Sven Jahnke, Raoul-Martin Memeshimer und Marc Timme; "Stable irregular dynamics in complex neural networks." Physical Review Letters 2007, 100, 048102.
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.