Nano-Heizplatten für DNA - Turbo-Analyse von Gendefekten
Der Trick: die DNA wird mit Gold-Nanoteilchen verbunden, die mittels eines Laserpulses zu winzigen Heizplatten werden. Eine Schmelzkurve wird aufgenommen, aus der sich ablesen lässt, ob die DNA in Ordnung ist oder nicht.
Viele Krankheiten hängen mit fehlerhaften Sequenzen in der DNA zusammen. Diese Defekte führen als Nebeneffekt zu einer herabgesetzten Schmelztemperatur der DNA. An den Fehlstellen passen nämlich die beiden DNA-Stränge nicht genau zusammen. Daher trennen sie sich schon bei niedrigeren Temperaturen voneinander als bei einer intakten DNA. Diesen Effekt kann man zum Nachweis von DNA-Defekten nutzen, indem man die Schmelzkurve misst. Dazu isoliert man zunächst den maßgeblichen DNA-Abschnitt und vervielfältigt ihn dann in einer Polymerase-Kettenreaktion. Die DNA-Stücke werden anschließend mit Gold-Nanopartikeln verbunden. Dadurch bildet sich ein Knäuel aus DNA und Gold-Partikeln. Für die eigentliche Messung erhitzt man beim bisher üblichen Verfahren das Knäuel langsam in einem Wasserbad. Währenddessen misst man mit einem Laser die optische Absorption, das heißt die Abschwächung des Lichts. Schmilzt die DNA, lockert sich das Knäuel, und die Absorption sinkt. Ein großer Nachteil der bisherigen Methode: eine einzige Messung dauert etwa 30 Minuten. Für einen hohen Probendurchsatz ist das Verfahren nicht geeignet.
Dem Forscherteam ist es gelungen, ein weitaus schnelleres und einfacheres Verfahren zur Bestimmung der DNA-Schmelztemperatur zu entwickeln. Mit der neuen Methode lässt sich die eigentliche Messung in weniger als einer tausendstel Sekunde durchführen. "Vor uns hat noch niemand in so kurzer Zeit einen DNA-Defekt bestimmt" hebt Stehr hervor.
Und das ist der Trick: Statt die Probe von außen in einem Wasserbad langsam aufzuheizen, werden als Heizung die Gold-Nanoteilchen benutzt, die ja sowieso schon in der Probe enthalten sind. Alles was man dazu braucht, ist ein zusätzlicher Laser. Mit einem kurzen Licht-Impuls lassen sich die Nanoteilchen sehr schnell aufheizen. Und da sie sich in direkter Nähe der DNA-Moleküle befinden, werden auch diese sehr effektiv und schnell erwärmt. Entscheidend ist, dass der Großteil der umgebenden Lösung während der Messung nicht erhitzt werden muss. Mit einem Messlaser wird dann die zeitliche Entwicklung der Absorption ermittelt. Das Ganze kann man mit unterschiedlich intensiven Laserimpulsen durchführen und damit die Wärmezufuhr variieren. Reicht die durch den Laser-Impuls zugeführte Wärme nicht zum Schmelzen der DNA aus, ändert das System zwar seine Absorption, kehrt aber nach dem Abkühlen in seinen Ausgangszustand zurück. War der Impuls intensiv genug, löst sich das DNA-Goldknäuel, und die Absorption sinkt dauerhaft.
Stellt man die Impulsintensität so ein, dass nur eine defekte DNA schmilzt, nicht aber eine intakte, dann lässt sich mit einer einzigen Messung ermitteln, ob ein DNA-Stück einen Fehler aufweist oder nicht - und das gelingt in bisher unerreichter Geschwindigkeit. Diese neue Methode könnte der medizinischen Forschung viel Aufwand, Zeit und Geld sparen helfen. In bestimmten Fällen könnte eine schnellere DNA-Defektanalyse die Rettung von Leben bedeuten.
Auf das Messprinzip haben die Wissenschaftler bereits ein Patent angemeldet. Und Joachim Stehr möchte nach seiner Promotion zusammen mit einem Kommilitonen eine Firma gründen, um die Idee zu vermarkten.
Orignalveröffentlichung: Stehr, J., Hrelescu, C., Sperling, R.A., Raschke, G., Wunderlich, M., Nichtl, A., Heindl, D., Kürzinger, K., Parak, W.J., Klar, T.A., and Feldmann, J.; "Gold NanoStoves for Microsecond DNA Melting Analysis"; Nano Lett., 2008.