Magnetische Effekte in Eisen-Schwefel-Proteinen
Dynamische Modulationen von Heisenberg Austauschkopplungen
Die so genannten Eisen-Schwefel-Proteine sorgen dafür, dass die großen Energiemengen, die waehrend der Atmung oder Photosynthese erzeugt wurden, der Zelle in kleinen Portionen kontrolliert zur Verfügung gestellt werden. Bei diesen Prozessen spielen kleine Atomklumpen ("Cluster"), bestehend aus "typisch anorganischen Atomen" wie Eisen und Schwefel, eine wichtige Rolle, weil sie Elektronen aufnehmen und wieder abgeben können. "Diese Atome können also im Protein sozusagen kontrolliert zum 'Rosten und Entrosten' gebracht werden", verdeutlicht Dr. Eduard Schreiner, der Erstautor der Arbeit. Darüber hinaus haben diese Cluster auch faszinierende magnetische Eigenschaften aufgrund der vorhandenen Eisenatome. Im Gegensatz zu den aus dem täglichen Leben bekannten Eisenmagneten, die ferromagnetisch sind, zeigen diese von der Natur verwendeten Nanomagnete eine komplexere, antiferromagnetische Kopplung.
Die antiferromagnetische Wechselwirkung zwischen den Eisenatomen der Eisen-Schwefel-Cluster wird durch die so genannte Heisenbergsche Austauschkopplung vermittelt und durch eine "Kopplungskonstante" quantitativ beschrieben. Bislang war es nur möglich, diese Effekte rein statisch zu untersuchen, was allerdings sehr unrealistisch ist, da sich normalerweise die Proteine und auch die Cluster permanent bewegen. Die Theoretischen Chemiker der RUB haben nun eine neuartige multiskalige Computersimulationstechnik entwickelt, um den Einfluss dynamischer Bewegungen auf die Heisenbergsche Kopplungskonstante zu berechnen.
Und siehe da, es wurde eine starke Beeinflussung der antiferromagnetischen Kopplungskonstante durch die Proteindynamik gefunden, welche die Struktur des Proteins dauernd leicht verändert. Diese Konstante ist also im "wahren Leben" gar nicht konstant, wie durch die Bezeichnung suggeriert und auch meist stillschweigend angenommen wird, sondern schwankt in weiten Bereichen um einen Mittelwert. Dieser Mittelwert ist zunächst einmal von der speziellen Proteinumgebung abhängig, was anhand zweier Zustände ("Konformere") eines Ferredoxins gezeigt wurde. Zudem können die dynamischen Modulationen der antiferromagnetischen Kopplung spektral zerlegt und die so gewonnenen einzelnen Komponenten analysiert werden. Interessanterweise stellt sich dabei heraus, dass ganz bestimmte Schwingungsmoden des Proteins die Kopplung beeinflussen. Nun wird es darum gehen, diesen theoretisch vorhergesagten Effekt auch messen zu können. Aber auch da haben die Theoretiker einige Ideen, die sie in ihrer Publikation vorstellen und damit den Ball den Experimentatoren zuspielen.
Originalveröffentlichung: E. Schreiner, N. N. Nair, R. Pollet, V. Staemmler, and D. Marx; "Dynamical magnetostructural properties of Anabaena ferredoxin."; PNAS 2007.
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Antibody Stabilizer von CANDOR Bioscience
Protein- und Antikörperstabilisierung leicht gemacht
Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.