Gefährliche Liebschaften
Tübinger Forscher entdecken, wie das Immunsystem zur Bildung neuer Arten führen kann
Kirsten Bomblies
Auslöser für die Arbeit war die Beobachtung, dass "kümmernde" Hybride in verschiedenen Pflanzenarten sich stets ähneln: Sie bleiben im Wachstum zurück, die Blätter vergilben, Gewebedefekte entstehen, und oft bleibt die Blüte aus. "Der Verdacht lag nahe, dass dem Phänomen der Hybrid-Nekrose immer derselbe biochemische Mechanismus zugrunde liegt", erklärt Weigel, Direktor am MPI für Entwicklungsbiologie.
Um diese Annahme zu überprüfen, untersuchten die Max-Planck-Forscher insgesamt 280 Arabidopsis-Stämme von unterschiedlichen Standorten, die sie in 861 verschiedenen Kombinationen miteinander kreuzten. Die meisten der so gewonnenen Hybrid-Pflanzen wuchsen normal und kräftig, aber immerhin 20 - also knapp zwei Prozent - der Kreuzungen brachten "Kümmerlinge" hervor. Wie aufwändige genetische Analysen ergaben, wiesen all diese Hybride ein sehr ähnliches Muster auf: Etwa 1000 Gene waren bei allen deutlich stärker oder schwächer aktiviert als bei den gesunden Elternpflanzen. Das Genprofil der Hybride war darüber hinaus charakteristisch für eine starke Aktivierung der Immunabwehr. Normalerweise greift das pflanzliche Immunsystem nur infizierte Zellen an und vernichtet sie. Bei den kümmernden Hybriden dagegen richtete es sich offenbar auch gegen gesundes Gewebe. Offensichtlich verwechselten die Hybridpflanzen also den eigenen Körper mit gefährlichen Keimen.
Schädliche Wechselwirkungen zwischen normalen Genen
Die genetische Ursache für diese Autoimmunreaktion war zwar von Kreuzung zu Kreuzung unterschiedlich, lag aber oft in nur zwei Genen, die sich nicht vertrugen. Dabei kamen jeweils eines der fatalen Gene von dem Vater und das andere von der Mutter. In einem Fall, den die Wissenschaftler detailliert untersuchten, war eines dieser Gene, das die Hybride, aber nicht die Eltern krank macht, ein Pathogendetektor. Wie die Forscher betonen, werden die Hybride jedoch nicht Opfer von fehlerhaften Genen: Anders als bei manchen Erbkrankheiten treffen bei ihnen nicht zwei defekte Varianten ein und desselben Gens aufeinander. Vielmehr kommt es zu schädlichen Wechselwirkungen zwischen Genen, die sich in den beiden Elternstämmen unterschiedlich entwickelt haben. Jedes Gen für sich ist dabei harmlos, die Eltern völlig gesund. Erst die Kombination beider Erbanlagen führt zu Problemen. Nach ihren Entdeckern wird diese Art der genetischen Unverträglichkeit Dobzhansky-Muller-Inkompatibilität genannt.
Weigels Arbeit stellt den klassischen Artbegriff infrage, wonach die Individuen einer Art sich untereinander beliebig paaren und fruchtbare Nachkommen zeugen können, nicht aber mit Individuen anderer Arten. Offenbar unterliegt der Austausch von Genen auch innerhalb einer Art erheblichen Beschränkungen.
Wenn Pflanzen sich bei der Schädlingsabwehr irren
Während diese Sicht sich bereits durchgesetzt hat, ist bis heute weitgehend unklar, warum solche genetischen Barrieren überhaupt entstehen. Welchen Vorteil hat die Pflanze, wenn unter Umständen die gesamte Nachkommenschaft aus einer Kreuzung verloren geht? Die aktuelle Studie liefert nun eine mögliche Erklärung: Das Pflanzengenom verändert sich unter dem Druck, sich gegen Schädlinge zur Wehr setzen zu müssen. "Pflanze und Schädlinge befinden sich in einer Art Rüstungswettlauf", erläutert Jeff Dangl, Professor at der Universität von North Carolina und einer der Koautoren. Die Krankheitserreger entwickeln fortwährend neue Strategien, um der Immunabwehr der Pflanze zu entgehen. Im Gegenzug versucht die Pflanze, sich auf eine Vielzahl möglicher neuer "Waffen" vorzubereiten. Derart hochgerüstet kann es vorkommen, dass sie auch harmlose Eiweißvarianten eines entfernten Verwandten als gefährlich einstuft und attackiert.
Originalveröffentlichung: Detlef Weigel, Kirsten Bomblies, Janne Lempe, Norman Warthmann, Christa Lanz, Petra Epple, Jeffery L. Dangl; "Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants"; PLoS Biology 2007, 5, e236.