Arzneikapseln aus künstlicher Spinnenseide
Einkapselungsprozesse sind für viele Anwendungen von größter Bedeutung. Oft ist es beispielsweise nötig, bestimmte Arzneien oder Medikamente präzise im Körper an ihr Ziel zu steuern, ohne dass sich diese unterwegs auflösen. Andere Anwendungen sind die Einkapselung von Geschmacks- oder Wirkstoffen in Lebensmitteln, die immer neue Herausforderung an die Stabilität und gezielte Freisetzung stellen. Für ihre Experimente verwendeten die Forscher an der TU München als Schutzhülle ein bestimmtes Protein, das den Spinnfaden-Eiweißen nachgebildet ist. Diese sind - Grundvoraussetzung für Anwendungen im Körper - immunologisch unsichtbar.
Die Protein-Moleküle sind mit dem zu verpackenden Wirkstoff in einem Wassertröpfchen gelöst. Dann emulgierten die Biophysiker die Tröpfchen in einem Öl. Bei diesem Prozess bildet sich zwischen den beiden Phasen eine Grenzfläche. Aufgrund ihres amphiphilen Charakters (Substanz löst sich in polaren und in unpolaren Lösungsmitteln) wanderten die Seidenproteine an diese Phasengrenze und bildeten eine sehr stabile beta-Faltblattstruktur aus, wie man sie auch in den Seidenfäden findet. Auf diese Weise formierten sich die Seidenproteine zu einem hauchdünnen Film, nur wenige Nanometer dick. Die so entstandene Mikrokapsel bildet ein ideales System, verschiedenste Inhalte sicher ans gewünschte Ziel zu transportieren. Die gesamte Reaktionszeit, in der sich die kleinen Kapseln ausbilden, beträgt nur wenige Sekunden, was auf die einzigartigen Eigenschaften der Spinnenseidenproteine zurückzuführen ist.
Die so erzeugten Mikrokapseln sind hochelastisch, können kaum osmotisch schwellen und sind somit gegen den osmotischen Druck nahezu immun. Dies ist deshalb wichtig, weil die Kügelchen nicht mitten im Körper an ungewollter Stelle platzen und ihren Wirkstoff freisetzen sollen. Außerdem weisen die ultrakleinen "Träger" eine hohe chemische Stabilität auf, und das gleichzeitig bei absoluter Biokompatibilität und immunologisch neutralem Verhalten. Das Freisetzen der transportierten Substanz kann durch Proteasen erfolgen. Diese natürlichen Enzyme bauen die Schutzhülle von außen ab.
Ein großer Vorteil dieser im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM) entwickelten Methode ist nicht nur die Einfachheit des Prozesses, sondern auch die hervorragende Kontrollierbarkeit der Materialeigenschaften. So gelingt es, durch den Einsatz von speziellen Vernetzungsmethoden, den Prozess des Abbaus der Seidenkapsel gezielt zu verzögern. Auf diese Weise eröffnen diese neu entwickelten biomimetischen Seidenmaterialien vielfältige Einsatzmöglichkeiten - nicht nur zum Medikamententransport, sondern auch für funktionale Lebensmittel oder für technische Anwendungen.
Originalveröffentlichung: Advanced Materials 2007.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Pharmaceutical Substances von Thieme Verlag
Entdecken Sie industrielle Synthesewege für 2.600 APIs
Ihr Recherchetool für Synthesen, Patente und Anwendungen – Pharmaceutical Substances
KNAUER IJM NanoScaler von KNAUER
Effiziente Formulierung von Lipid-Nanopartikeln für RNA-basierte Therapien
Optimieren Sie die Wirkstoffverkapselung von 1 ml bis zu Hunderten von Millilitern mit minimalem Wirkstoffeinsatz
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.