Der "Allen Brain Atlas" - eine molekulare Karte des Gehirns

Internationales Forscherteam veröffentlicht dreidimensionalen Atlas der Genexpression im Maus-Gehirn

11.12.2006

Welche Gene braucht unser Gehirn? Welche Hirngebiete benutzen welche Gene? Für Mäuse liegt jetzt erstmalig ein umfassender Atlas der räumlichen Expression von Genen im Gehirn vor. Er zeigt, welche genetische Information wo abgelesen wird. Der "Allen Brain Atlas" (ABA) ist das Ergebnis eines umfangreichen Forschungsprojektes, dessen Vorarbeiten bereits in den 1990er-Jahren angestoßen wurden.

Der "ABA" ist weltweit über das Internet zugänglich und umfasst nicht nur ca. 20.000 Expressionsmuster, sondern zeigt diese Information auf aneinander gereihten Schnitten durch das Gehirn und erschließt damit selbst kleine Teilbereiche dieses wichtigen Organs. Der Atlas wurde nach dem Microsoft-Mitbegründer Paul Allen benannt, dessen Interesse und Großzügigkeit die Realisation des Projekts in Amerika ermöglicht hat. Die zugrunde liegende Technologie wurde von Prof. Gregor Eichele und seinem Team in der Max-Planck-Gesellschaft entwickelt.

Warum eine Karte des Gehirns und warum bei der Maus? Abgesehen von seiner Größe ist das Gehirn der Maus dem Gehirn des Menschen in vielen Dingen sehr ähnlich. Die Teilstrukturen sind identisch und selbst die Großhirnrinden der beiden Säuger weisen eine überraschend ähnliche Architektur auf. Bei beiden sind die miteinander verbundenen Nervenzellen in Schichten angeordnet. Zahlreiche Studien haben gezeigt, dass die Funktion des Gehirns auf dieser Architektur und der vielfältigen Verknüpfung der Nervenzellen über sogenannte Synapsen beruht. Ein Verdienst des ABA ist die Identifizierung zahlreicher Gene, deren Expression (Ablesen der in den Genen kodierten Information) die Schichtung der Großhirnrinde widerspiegelt. Derart detaillierte strukturelle Expressionsmuster ergab der ABA auch andernorts im Gehirn, z.B. im Hippocampus, dem Sitz des Gedächtnisses. Der ABA zeigt nun allerdings, dass die Geografie des Hippocampus und der anderen Gehirnareale viel komplexer ist als bisher vermutet.

Die zur Erstellung des ABA eingesetzte Methode beruht auf der Analyse und anschließenden Kartographierung der in Nervenzellen vorliegenden Gentranskripte (mRNAs) mit markierten Sonden. Die automatisierte Technik ermöglicht den Nachweis von nur einigen wenigen mRNA Molekülen in den "Dendriten" der Nervenzellen. Diese feinen Verästelungen bilden Synapsen mit anderen Nervenzellen, die oft in weiter Entfernung liegen. Man nimmt an, dass Gehirnprozesse wie etwa das Lernen die Bildung neuer bzw. die Modifikation bestehender Synapsen bedingen. Der ABA zeigt viele Fälle auf, in denen man mRNAs in Dendriten findet, also mRNAs auf dem Weg zu oder sogar in der Nähe von Synapsen. Die Gene, die diesen mRNA-Stücken zugrunde liegen, könnten also besonders wichtig für synaptische Prozesse sein.

Generell dient ein Atlas zur Orientierung in einer komplexen Umgebung. Der ABA erfüllt diese Aufgabe in mancherlei Hinsicht. Einzelne, zum Teil sehr kleine Gehirnbereiche sind durch eine Handvoll dort exprimierter Gene genau definiert. Diese Markierungen sind von großem Nutzen bei der Untersuchung von abnormalen Gehirnen, denn man könnte mit verschiedenen Markern herausfinden, welche Gehirnregionen beeinträchtigt sind. Markergene könnten auch für gezielte Diagnostik oder Therapie eingesetzt werden, indem sie so mit anderen Stoffen kombiniert werden, dass etwa Enzyme nur an bestimmten Orten aktiv werden.

Diese wenigen Beispiele illustrieren den Nutzen des ABA für die zukünftige neurobiologische und medizinische Forschung. Aber lassen sich aus dem Atlas auch bereits jetzt Erkenntnisse über die Funktion von Genen im erwachsenen Gehirn ableiten? Es ist ja unumstritten, dass eine fein abgestimmte raumzeitliche Expression von Genen der Konstruktion des Gehirns zugrunde liegt - Gene daher eine fundamentale Aufgabe bei der Gehirnentwicklung haben. Eine derart herausragende Steuerungsfunktion ist für das ausgewachsene Gehirn aber nur eingeschränkt nachgewiesen. Zum Beispiel benötigen Nervenzellen viel Energie, daher sind konsequenterweise auch die Gene von Stoffwechsel-Eiweißen im Gehirn exprimiert. Der ABA zeigt aber nun, dass auch viele Gene im Gehirn exprimiert sind, die Schaltfunktionen haben.

Etwa 40 Millionen Euro hat der Allen Brain Atlas gekostet und ca. 100 Wissenschaftler und Techniker haben über vier Jahre daran gearbeitet. Jetzt gilt es die Karten des ABA weiter zu verfeinern. Oft kodieren Gene mehrere leicht unterschiedliche mRNAs; diese Alternativen sind im ABA nur beschränkt dokumentiert. Der ABA besteht aus Zehntausenden von Bildern, die man auf der Website des Atlas nach Gen-Namen durchsuchen kann. Von großem Nutzen wäre eine weitere Suchmethode, mit der man Gene auch nach dem Expressionsort im Gehirn suchen könnte. Ein weiteres Projekt der Zukunft wird die Ausweitung der Methode auf andere Gehirne sein. Ratten spielen in der medizinischen Grundlagenforschung eine besonders wichtige Rolle und kürzlich wurde auch ihr Genom entschlüsselt. Das ruft geradezu danach, auch einen molekularen Atlas des Rattenhirns zu erstellen. Nachdem der ABA - mit deutschen Ideen - in den USA erstellt wurde, könnte ein solches Projekt vielleicht wieder in Deutschland oder zumindest Europa realisiert werden. Das Team von Prof. Gregor Eichele steht zur Unterstützung bereit.

Originalveröffentlichung: Ed S. Lein, Michael J. Hawrylycz, Nancy Ao, Mikael Ayres, Amy Bensinger, Amy Bernard, Andrew F. Boe, Mark S. Boguski, Kevin S. Brockway, Emi J. Byrnes, Lin Chen, Li Chen, Tsuey-Ming Chen, Mei Chi Chin, Jimmy Chong, Brian E. Crook, Aneta Czaplinska, Chinh N. Dang, Suvro Datta, Nick R. Dee, Aimee L. Desaki, Tsega Desta, Ellen Diep, Tim A. Dolbeare, Matthew J. Donelan, Hong-Wei Dong, Jennifer G. Dougherty, Ben J. Duncan, Amanda J. Ebbert, Gregor Eichele, Lili K. Estin, Casey Faber, Benjamin A. Facer, Rick Fields, Shanna R. Fischer, Tim P. Fliss, Cliff Frensley, Sabrina N. Gates, Katie J. Glattfelder, Kevin R. Halverson, Matthew R. Hart, John G. Hohmann, Maureen P. Howell, Darren P. Jeung, Rebecca A. Johnson, Patrick T. Karr, Reena Kawal, Jolene M. Kidney, Rachel H. Knapik, Chihchau L. Kuan, James H. Lake, Annabel R. Laramee, Kirk D. Larsen, Christopher Lau, Tracy A. Lemon, Agnes J. Liang, Ying Liu, Lon T. Luong, Jesse Michaels, Judith J. Morgan, Rebecca J. Morgan, Marty T. Mortrud, Nerick F. Mosqueda, Lydia L. Ng, Randy Ng, Geralyn J. Orta, Caroline C. Overly, Tu H. Pak, Sheana E. Parry, Sayan D. Pathak, Owen C. Pearson, Ralph B. Puchalski, Zackery L. Riley, Hannah R. Rockett, Stephen A. Rowland, Joshua J. Royall, Marcos J. Ruiz, Nadia R. Sarno, Katherine Schaffnit, Nadiya V. Shapovalova, Taz Sivisay, Clifford R. Slaughterbeck, Simon C. Smith, Kimberly A. Smith, Bryan I. Smith, Andy J. Sodt, Nick N. Stewart, Kenda-Ruth Stumpf, Susan M. Sunkin, Madhavi Sutram, Angelene Tam, Carey D. Teemer, Christina Thaller, Carol L. Thompson, Lee R. Varnam, Axel Visel, Ray M. Whitlock, Paul E. Wohnoutka, Crissa K. Wolkey, Victoria Y. Wong, Matthew Wood, Murat B. Yaylaoglu, Rob C. Young, Brian L. Youngstrom, Xu Feng Yuan, Bin Zhang, Theresa A. Zwingman, Allan R. Jones; "Genome-Wide Atlas of Gene Expression in the Adult Mouse Brain"; Nature, Advanced Online Publication 2006.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Diagnostik

Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.

Themenwelt anzeigen
Themenwelt Diagnostik

Themenwelt Diagnostik

Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.