Reißverschluss für Zellmembranen

Max-Planck-Forscher belegen, dass sich bestimmte Eiweiße in Nervenzellen schnell genug vereinigen, um den Signalaustausch zu ermöglichen

04.08.2006

Nervenzellen brauchen nur Millisekunden, um sich zu verständigen. Sie schütten dabei Botenstoffe aus winzigen Vesikeln in die Synapsen aus. Wie sich die Vesikel, die vorher in den Neuronen auf ihren Einsatz warteten, so schnell mit der Zellmembran vereinigen, ist bislang noch nicht völlig geklärt. Wissenschaftler des Göttinger Max-Planck-Instituts für Biophysikalische Chemie haben jetzt aber Belege für einen möglichen Mechanismus gefunden: In einer Art biochemischem Reißverschluss verzahnen sich demnach Proteine auf der Hülle der Vesikel und der Membran der Nervenzellen. Die Göttinger Forscher haben zudem festgestellt, in welcher Richtung sich dieser Reißverschluss zusammenzieht. Nach demselben Prinzip könnten sich auch andere Membranen vereinigen. Zum Beispiel, wenn Proteine vom endoplasmatischen Retikulum, einer zellulären Werkstatt für diverse Biomoleküle, in Vesikeln zum Golgi-Apparat transportiert werden, der die Eiweiße weiterverarbeitet.

Die Biocontainer, die in einer Nervenzellen Botenstoffe in die Kontaktstelle zur Nachbarzelle schütten, ähneln Luftblasen in einem Wasserglas: Die perlen auch zur Oberfläche und kehren dort ihr Inneres nach außen. Die kleinen Bläschen, aus denen Nervenzellen Neurotransmitter in die Synapsen gießen, blubbern jedoch nicht wahllos zur Zelloberfläche, sondern auf Kommando. Das ergibt einen Kalziumüberschuss, der augenblicklich umgesetzt wird. Die Forscher des Max-Planck-Instituts für biophysikalische Chemie könnten jetzt die Debatte beenden, wie sich die Vesikel in wenigen Millisekunden ihres Inhalts entledigen. Als mögliche Akteure in dem Mechanismus gelten schon seit längerem drei Proteine, die Biochemiker als SNARE-Komplex bezeichnen. Eines der Eiweiße sitzt in der Hülle eines Vesikels und zwei in der Membran der Nervenzelle. Kommt das Kalziumsignal, verdrillen sich die drei Proteine zu einem Helixbündel. "Bislang konnten wir nicht simulieren, wie sich die Proteine in Bruchteilen einer Sekunde vereinigen", sagt Dirk Fasshauer, der Leiter der Forschungsgruppe. Die Max-Planck-Forscher sind dabei jetzt einen großen Schritt vorangekommen und liefern so gute Argumente für den biochemischen Reißverschluss. Der war bislang noch umstritten, weil er sich nicht rasch genug schließen ließ.

Das lag, wie die Göttinger Wissenschaftler jetzt herausgefunden haben, aber nicht an dem Mechanismus. Vielmehr hatten sie bei ihren Experimenten Pech: Die zwei Proteine der Zellmembran Syntaxin 1 und SNAP-25 haben sich vorher schon zu einem Bündel ineinander gedreht. In dieser Spirale soll noch ein Platz frei bleiben, den Synaptobrevin, das Eiweiß der Vesikelmembran, einnehmen kann, sobald das Kalziumsignal kommt. Bislang dauerte dieser Schritt in den Versuchen der Biochemiker jedoch Stunden. Denn das Synaptobrevin musste ein zweites Syntaxinmolekül verdrängen, das sich auf seinen Platz in dem Helixbündel geschoben hatte. Die Max-Planck-Wissenschaftler haben jetzt verhindert, dass sich das zweite Syntaxinproteinen dorthin mogelt, wo das Synaptobrevin hingehört: Sie haben in ihre Versuchslösung ein kurzes Stück des Synaptobrevin gemischt, das als eine Art Platzhalter für das vollständige Molekül diente. Gaben sie nun Synaptobrevin zu ihrem Reaktionsgemisch, ersetzte Synaptobrevin den Platzhalter so schnell, wie es für den Dialog der Nervenzellen nötig ist.

Das klappte jedoch nur, wenn die Wissenschaftler ein bestimmtes Ende des Synaptobrevin als Platzhalter verwendeten und damit auch ein bestimmtes Ende der Spirale blockierten, die Syntaxin 1 und SNAP-25 in der Zellmembran formen. Sie nennen es das C-terminale Ende, weil die Aminosäurenkette hier mit einer Carboxylgruppe endet. Blockierten sie das N-terminale Ende, an dem eine Aminogruppe sitzt, funktionierte der Reißverschluss nicht schnell genug. Damit haben die Biochemiker auch bewiesen, dass sich der Reißverschluss vom N-terminalen zum C-terminalen Ende zusammenzieht. Der Reißverschluss zieht dabei auch die Membranen zueinander. Denn die C-terminalen Enden der Proteine den Membranen zugewandt sind. Lagern sich die Proteine aneinander, rücken daher auch die Membranen zusammen. "Wir verstehen noch nicht genau, wie das Synaptobrevin den Platzhalter verdrängt", sagt Dirk Fasshauer.

Offen ist aber auch noch die Frage, wie der biochemische Reißverschluss in den Nervenzellen selbst funktioniert. So könnte es sein, dass sich nicht nur die beiden Proteine der Zellmembran schon vor dem Kalziumsignal zusammendrehen, sondern auch das Synaptobrevin schon seinen Platz einnimmt. Zumindest teilweise. Dann müsste ein Molekül jedoch dafür sorgen, dass sich die drei Proteine erst nach dem Kalziumsignal völlig ineinander drehen. "Manche Kollegen glauben, dass der Mechanismus nur dann schnell genug ablaufen kann", sagt Fasshauer. Das Molekül, das die Vereinigung der drei Moleküle auf halbem Weg aufhalten könne, sei jedoch noch nicht bekannt. Er favorisiert daher auch eine Version des Reißverschlusses, der nicht schon halb geschlossen auf das Kalziumsignal wartet. "Wir haben jetzt gezeigt, dass sich das Synaptobrevin auch ohne diese Vorbereitung schnell genug an den Komplex der beiden anderen Proteine anlagern kann", so Fasshauer. Möglicherweise muss sogar ein Platzhalter verhindern, dass sich der Reißverschluss vor dem Kalziumsignal zusammenzieht.

Originalveröffentlichung: A. Pobbati, A. Stein, D. Fasshauer; "N- to C-Terminal SNARE Complex Assembly Promotes Rapid Membrane Fusion"; Science 2006.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...