Möglichen Gefahren der Nanopartikel auf der Spur
Empa-ForscherInnen entwickeln Zellkultur-Testverfahren
Ziel der Empa-ForscherInnen war es, ein schnelles und einfaches Testsystem zu entwickeln, um eine erste Abschätzung der Toxizität von Nanopartikeln zu erhalten ohne auf Tierversuche zurückzugreifen. Ein idealer Kandidat hierfür sind Zellkulturen, wie sie auch bei Toxizitätstests von Chemikalien zum Einsatz kommen. "Wir mussten allerdings schnell feststellen, dass dies bei Nanopartikeln nicht so einfach ist", so Wick. Das Problem: Die kleinen Teilchen verkleben sehr schnell. "Als wir die Nanopartikel in die Nährlösung zu den Zellen gaben, erhielten wir anfangs nur Klumpen, die etwa so gross waren wie eine ganze Zelle", erinnert sich Wick. Materialwissenschaftler halfen den Biologen mit einigen Tricks, das Nanopulver in der Zellnährlösung zu suspendieren und anschliessend zu untersuchen. "Viele der bisherigen Studien, die sich mit der Toxizität von Nanopartikeln befassen, wurden von Biologen durchgeführt, die sich nicht darüber im Klaren sind - wie wir anfangs eben auch -, in welcher Form die Teilchen schlussendlich mit den Zellen interagieren. Das ist dann gute Biologie, aber lausige Materialwissenschaft", sagt Peter Wick. Gebe man einfach Nano-Rohmaterial auf die Zellen, könne man nie sicher sein, welche Art von Teilchen für den beobachteten Effekt verantwortlich waren.
Wick und seine KollegInnen nun sieben industriell wichtige Nanopartikel auf ihre zelltoxische Wirkung untersucht - von dem als harmlos geltenden Siliziumoxid, das schon seit langem als Nahrungsmittelzusatz verwendet wird, etwa in Ketchup, über Titan- und Zinkoxid, das in Kosmetika zum Einsatz kommt, bis hin zu Cer- und Zirkonoxid aus der Elektronikindustrie. Zum Vergleich testeten die Empa-ForscherInnen Asbestfasern, deren toxische Wirkung auf Zellen bestens bekannt und untersucht ist. Als Versuchskaninchen benutzten die ForscherInnen Zellinien zweier Zelltypen: menschliche Lungenzellen und Mausfibroblasten, welche häufig bei Toxizitätstest verwendet werden. Der Stoffwechsel der Zellen, deren Teilungsrate sowie ihr Erscheinungsbild unter dem Mikroskop diente den ForscherInnen als Gradmesser für den Gesundheitszustand der Zellen. Das Fazit der Studie, die demnächst im Fachblatt "Environmental Science & Technology" erscheint, lautet: "Nicht alle Nanopartikel sind gleich toxisch".
Zwischen Asbest und Siliziumoxid konnte das Empa-Team eine Art "Toxizitätsrangliste" aufstellen: Während Eisen- und Zinkoxidpartikel den menschlichen Lungenzellen erheblich zusetzen, erwies sich Trikalziumphosphat (das bei medizinischen Implantaten zum Einsatz kommt) als ähnlich verträglich wie Siliziumoxid. Titanoxid, Ceroxid und Zirkonoxid haben den Zellstoffwechsel zwar kurzfristig beeinträchtigt, waren aber deutlich weniger toxisch als Asbest. Insgesamt reagierten die menschlichen Lungenzellen deutlich empfindlicher auf die Nanopartikel als Mausfibroblasten. "Die Lungenzellen eignen sich daher sehr gut für derartige Toxizitätsuntersuchungen", sagt Wick. "Unser Ziel ist es, ein Zellsystem zu entwickeln, das den Tierversuchen möglichst nahe kommt." Daher untersuchen die Empa-ForscherInnen derzeit eine ganze Reihe unterschiedlicher Zelllinien, unter anderem drei unterschiedliche Lungenzelltypen sowie frisch isolierten Hühnerembryo-Nervenzellen.
In einer noch unveröffentlichten Studie haben Wick und seine KollegInnen Kohlenstoffnanoröhrchen unter die Lupe genommen. Im Gegensatz zu Nanopartikeln waren die Nanoröhrchen gerade dann besonders schädlich für die Zellen, wenn sie zu grösseren Nadeln zusammengeklebt waren. "Diese Agglomerate gleichen Asbestfasern - sowohl im Aussehen wie auch in ihrer Toxizität", sagt Wick. Als nächstes will der Biologe verstehen, was genau in einer Zelle abläuft, wenn sie Nanopartikeln ausgesetzt ist. Dazu analysiert er die Aktivität von Tausenden von Genen mit Hilfe von DNA-Chips.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.