Schnappschüsse vom molekularen Postversand in der Zelle

Berliner Forschungsverbund gelingen wichtige Einblicke in die Synthese- und Sortiermaschinerie für sekretorische und Membranproteine

09.05.2006

Die meisten Proteine haben in einer Zelle einen ganz genauen Bestimmungsort, an dem sie ihre Funktion ausüben. Doch wie gelangen sie dorthin? Wissenschaftlern der Charité Berlin, der Universität Heidelberg und des Berliner Max-Planck-Instituts für molekulare Genetik ist es jetzt - mittels Kryo-Elektronenmikroskopie und Einzelpartikelanalyse - gelungen, die Struktur einer daran beteiligten "molekularen Maschine" sichtbar zu machen. Diese besteht aus einem aktiven Ribosom sowie einem speziellen Signalerkennungsprotein und dem zugehörigen Rezeptor. Die Strukturaufklärung zeigt nun, dass bei der Interaktion der drei Proteine spezielle Bindestellen am Ribosom zugänglich werden, die ein Ankoppeln an einen weiteren Proteinkomplex ermöglichen, der das Durchschleusen der neu produzierten Proteine durch die Membran übernimmt. Diese Einblicke helfen, die komplizierte Expression und nachfolgende Sortierung von sekretorischen bzw. Membranproteinen in der Zelle besser zu verstehen.

Nach neuen Erkenntnissen aus der Genom- und der biologischen Strukturforschung wird immer deutlicher, dass die meisten Proteine in der Zelle nur im Verbund mit anderen Proteinen als so genannte "molekulare Maschinen" ihre eigentlichen Funktionen ausüben können. Molekulare Maschinen - wie etwa das Ribosom - besitzen nicht nur einen äußerst komplexen Aufbau, sie unterliegen auch einer komplizierten Regulation bei ihrem Betrieb. Die zentrale Frage, wie die einzelnen Partner dabei zusammenarbeiten, damit die jeweiligen Körperfunktionen reibungslos ablaufen können, ist daher eine der großen Herausforderung in der modernen Strukturbiologie.

Die Sortierung von Proteinen ist ein essentieller Schritt bei der Genexpression aller Organismen, von den Bakterien bis hin zum Menschen. Von entscheidender Bedeutung ist das Sortieren bei der Biosynthese von sekretorischen Proteinen, also Proteinen, die später aus der Zelle ausgeschleust werden, wie etwa Antikörper, sowie von Membranproteinen, wie etwa Rezeptoren für neuronale Botenstoffe und andere Signalmoleküle. Etwa 30 Prozent aller Proteine in Genom von eukaryotischen Zellen sind entweder sekretorische oder Membranproteine. Die Mehrzahl dieser Proteine wird bereits während ihrer Biosynthese in einem Mechanismus sortiert, den man als kotranslationale Translokation bezeichnet.

Besonders wichtig ist dabei ein molekularer Komplex, der aus einem aktivem Ribosom, also einer Protein-Synthese-Maschine der Zelle, sowie einem Signalerkennungsprotein (engl. signal recognition particle, SRP) und dem entsprechenden Rezeptor gebildet wird. Die Struktur dieses molekularen Komplexes aufzuklären ist nun dem Wissenschaftlerteam von Charité, Universität Heidelberg und Max-Planck-Institut für molekulare Genetik gelungen.

Schlüsselelement für die Funktionsweise dieser molekularen Maschine ist eine Signalsequenz, die sich am N-terminalen Ende der zu sortierenden Proteine befindet. Diese Sequenz fungiert quasi als "Postleitzahl" in der Zelle. Das Signalerkennungsprotein (SRP) liest diese Sequenz, sobald sie das Ribosom am Anfang einer gerade neu-gebildeten Proteinkette verlässt. SRP bindet an das Ribosom und leitet dieses unter Beteiligung des SRP-Rezeptors zum so genannten Translokon-Komplex in der Membran des endoplasmatischen Reticulums (ER). Dieser Komplex wiederum besteht aus einem "proteinleitenden Kanal" und weiteren Membranproteinen. Das Ribosom wird am Translokon verankert und fährt erst dort mit der Proteinbiosynthese fort, wobei die neue Proteinkette dann entweder durch die Membran des endoplasmatischen Reticulums transportiert (Translokation) oder in diese selbst eingebaut wird.

Hierbei ist bemerkenswert, dass das Ribosom nicht mehr an das Translokon binden kann, sobald es SRP gebunden hat. Hierzu benötigt es die Unterstützung des SRP-Rezeptors, der das Ribosom von SRP auf das Translokon überträgt. Die nun aufgeklärte Struktur des Komplexes zeigt, wie der Rezeptor mit dem Ribosom bzw. SRP interagiert und hierbei Teile des SRP-Moleküls vom Ribosom verdrängt. Erst auf diese Weise werden spezifischen Bindestellen am Ribosom für das Translokon zugänglich. Die Aufklärung dieses Schrittes ist ein wichtiger Baustein zum Verständnis, auf welche Weise die komplizierte Expression von sekretorischen bzw. Membranproteinen in der Zelle funktioniert.

Originalveröffentlichung: M. Halic, M. Gartmann, O. Schlenker, T. Mielke, M. R. Pool, I. Sinning, R. Beckmann; "Signal Recognition Particle Receptor Exposes the Ribosomal Translocon Binding Site"; Science 2006.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Antikörper

Antikörper sind spezialisierte Moleküle unseres Immunsystems, die gezielt Krankheitserreger oder körperfremde Substanzen erkennen und neutralisieren können. Die Antikörperforschung in Biotech und Pharma hat dieses natürliche Abwehrpotenzial erkannt und arbeitet intensiv daran, es therapeutisch nutzbar zu machen. Von monoklonalen Antikörpern, die gegen Krebs oder Autoimmunerkrankungen eingesetzt werden, bis hin zu Antikörper-Drug-Konjugaten, die Medikamente gezielt zu Krankheitszellen transportieren – die Möglichkeiten sind enorm.

Themenwelt anzeigen
Themenwelt Antikörper

Themenwelt Antikörper

Antikörper sind spezialisierte Moleküle unseres Immunsystems, die gezielt Krankheitserreger oder körperfremde Substanzen erkennen und neutralisieren können. Die Antikörperforschung in Biotech und Pharma hat dieses natürliche Abwehrpotenzial erkannt und arbeitet intensiv daran, es therapeutisch nutzbar zu machen. Von monoklonalen Antikörpern, die gegen Krebs oder Autoimmunerkrankungen eingesetzt werden, bis hin zu Antikörper-Drug-Konjugaten, die Medikamente gezielt zu Krankheitszellen transportieren – die Möglichkeiten sind enorm.