Aus-Schalter für Proteine
Aptamere unterscheiden selbst extrem ähnliche Eiweißmoleküle
Um herauszufinden, wozu ein Eiweißstoff gut ist, schaut man am besten, was der Körper ohne ihn anfängt. Weltweit suchen die Forscher daher nach möglichst simplen Methoden, um einzelne Proteine einfach "auszuschalten". So gibt es inzwischen viel versprechende Werkzeuge, die verhindern, dass die Zelle bestimmte Proteine überhaupt produziert. "Wir gehen einen anderen Weg", erklärt der Bonner Biochemiker Professor Dr. Michael Famulok: "Wir suchen nach Molekülen, den Aptameren, die sich ganz spezifisch an die gewünschten Proteine heften und dadurch verhindern, dass sie funktionieren."
Aptamere sind Ketten aus Ribonukleinsäure (RNA) - das ist sozusagen die "kleine Schwester" der Erbsubstanz DNA. RNA besteht aus vier Bausteinen, den Basen, die beliebig hintereinander gehängt werden können. So lassen sich unendlich viele verschiedene Ketten erzeugen. Diese Ketten "verknäuelen" sich je nach Basenfolge auf eine ganz charakteristische Weise und nehmen so eine bestimmte dreidimensionale Struktur an. Manche RNA-Aptamere sind so geformt, dass sie an bestimmte Proteine binden können und dann ihre Funktion beeinflussen. Bleibt nur noch, diese RNA-Ketten zu finden.
Nadel im Kornfeld
Die Aufgabe ähnelt der Suche nach der sprichwörtlichen Nadel im Heuhaufen - nur war es in diesem Fall eher ein ganzes Kornfeld: Aus 1014 verschiedenen RNA-Ketten bestand die Ausgangs-Mischung, 15.000mal soviel wie Menschen auf der Erde. In diesem Pool suchten die Forscher nach einem Aptamer, dass das Zellprotein Cytohesin-2 hemmt, ohne an das extrem ähnliche Cytohesin-1 zu binden. Die Methode, nach der sie vorgingen, ist elegant und schnell: "Wir befestigten das Cytohesin-2 an einer Trägersubstanz und kippten unsere RNA-Mischung darauf", erklärt Professor Famulok. "Die möglichen Kandidaten banden an das Cytohesin-2; was danach noch frei in der Lösung schwamm, war für uns uninteressant." Danach lösten die Forscher die RNA-Ketten vom Cytohesin-2 und gaben sie zum Cytohesin-1. Jetzt interessierten sie sich aber nur für die Aptamere, die sich nicht an das Cytohesin-1 geheftet hatten. Diese beiden Aufreinigungsschritte wiederholten sie so oft, bis sie ein Aptamer gefunden hatten, dass zwischen den beiden Proteinvarianten eindeutig unterscheiden konnte.
Klebrige Killer
Cytohesine sind wichtige Proteine in den weißen Blutkörperchen, den Zellen, mit denen der Körper Krankheitserreger attackiert. Auf einen molekularen Hilferuf hin - beispielsweise bei einer bakteriellen Infektion - sorgen die Cytohesine dafür, dass bestimmte Proteine in der Hülle der weißen Blutkörperchen plötzlich "klebrig" werden. Damit heften sich die Killerzellen dann an die Blutgefäß-Wand und wandern hindurch in das betroffene Gewebe. So kann das Immunsystem schnell seine Truppen am Ort des Scharmützels versammeln.
"Wir konnten nun durch spezifische Hemmung von Cytohesin-2 zeigen, dass dieses Protein zumindest in unseren Zellkulturen noch eine ganz andere Funktion wahrnimmt", erklärt Famuloks Kollege Professor Dr. Waldemar Kolanus. Der Bonner Biochemiker hat die Gruppe der Cytohesine vor einigen Jahren während seiner Zeit am Gen-Zentrum München entdeckt. "Cytohesin-2 scheint auch eine Reihe von Genen im Zellkern anschalten zu können, während Cytohesin-1 in den hier untersuchten Zellen diese Funktion nicht hat." Das ist insofern bemerkenswert, als die beiden Proteine zu 90 Prozent identisch sind.
Die Ergebnisse zeigen, dass Aptamere auch zwischen extrem ähnlichen Eiweißmolekülen unterscheiden und sie spezifisch hemmen können. Damit sind sie beispielsweise hervorragend geeignet, um die unterschiedlichen Funktionen der verschiedenen Mitglieder einer Proteinfamilie aufzuklären. Professor Famulok: "Für Proteinforscher sind Aptamere extrem nützlich - und überdies vergleichsweise einfach in der Handhabung."