Standardmethoden könnten Ergebnisse in Neurowissenschaften verfälschen
An den Verbindungsstellen zwischen zwei Zellen, der Synapse, ist ein dünner Spalt, den die Zellen mit chemischen Signalen überbrücken. Wenn Nervenzellen synaptische Signale von anderen Nervenzellen empfangen, werden diese integriert und in ein Muster von elektrischen Aktionspotenzialen umgewandelt. Diese elektrischen Reize können wiederum andere Zellen stimulieren: Aktionspotenziale öffnen Kanäle in der Zellmembran, sodass Calciumionen einströmen. Diese Calciumionen setzen eine Reihe von zellulären Prozessen in Gang, die Forscher mit bildgebenden Methoden messen können.
Schnurrhaare bringen den Durchbruch
Patrik Krieger und seine Kollegen haben diese Dynamik am Beispiel von zwei unterschiedlichen Zelltypen in der Großhirnrinde von Ratten untersucht. Anstatt wie üblich jede Zelle mit den gleichen, künstlichen Mustern von elektrischen Signalen zu reizen, verwendeten die Forscher Signalmuster, die sie bei lebenden Ratten in genau diesen Zelltypen aufgezeichnet hatten, während die Tiere an den Schnurrhaaren stimuliert wurden.
Die verschiedenen Zelltypen im Gehirn der Ratten reagierten darauf unterschiedlich: Die einen Zellen feuerten in einer hohen Frequenz elektrische Signale ab, während die anderen in derselben Zeit weniger Aktionspotenziale erzeugten.
Calciumdynamik ist fein abgestimmt
Im nachfolgenden Versuch stimulierten die Forscher jeden Zelltyp einmal mit natürlichen Frequenzen und Feuermustern und einmal mit standardisierten künstlichen Frequenzen. Währenddessen maßen sie den Calciumeinstrom in die Zellen. „Im Vergleich zeigte sich, dass bei beiden Zelltypen unter natürlichen Bedingungen dieselbe Menge Calcium einströmte, während es bei künstlichem Signalmuster unterschiedliche Mengen waren“, erklärt Patrik Krieger. „Das zeigt uns, dass die Calciumdynamik im Körper fein auf die jeweiligen Aktionspotenziale abgestimmt ist. So verhindert die Zelle eine Übersättigung. Darüber hinaus sind die Eigenschaften verschiedener Nervenzellen entsprechend ihrer Rolle im Gehirn fein eingestellt.“ In Zukunft wollen die Wissenschaftler untersuchen, ob sie ihr Ergebnis auch bei anderen Zelltypen im Gehirn bestätigen können.
„Wer Nervenzellen untersucht, sollte natürliche Frequenzen und Feuermuster verwenden, damit die Ergebnisse möglichst gut auf den lebenden Organismus übertragbar sind“, folgert Patrik Krieger.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Krieger, Patrik and de Kock, Christiaan P. J. and Frick, Andreas; "Calcium Dynamics in Basal Dendrites of Layer 5A and 5B Pyramidal Neurons Is Tuned to the Cell-Type Specific Physiological Action Potential Discharge"; Frontiers in Cellular Neuroscience; 2017
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.