Wie Proteine Zellmembranen verformen

27.02.2017 - Deutschland

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Artur Alves de Melo, MDC

EHD-Proteine binden an Membranenoberflächen. In der Zelle liegen EHDs in einem gehemmten Zustand vor, Binden sie an die Membran, wechseln sie in einen aktiven Zustand.

Auf dem Jahrmarkt zaubern Künstler mit ein paar Handgriffen aus einfachen Ballons kunstvolle Figuren. Dafür verformen sie die Ballonhaut und schnüren Teile davon ab. Auf ähnliche Art erzeugen Zellen in ihrer Außenhaut (Zellmembran) kleine Bläschen (Vesikel), die sie in ihr Inneres transportieren. Vesikel dienen zur Aufnahme von Nährstoffen und sind wichtig für die Weiterleitung von Nervensignalen.

EHD-Proteine sind an der Bildung solcher Vesikel beteiligt. Sie binden von innen an die Zellmembran und bilden dort lange Ketten und Ringe. Diese Ringe stülpen die Membran ein, ziehen sie zusammen und trennen sie letztlich von der Außenhaut der Zelle ab.

Oliver Daumke vom Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) erforscht die räumliche Struktur und die Funktionsweise der EHD-Proteine. In einer früheren Studie analysierten er und sein Team bereits die 3D-Struktur einer inaktiven EHD-Form, die nicht an die Membran gebunden ist. Wie EHD-Proteine aktiviert werden, um an Membranen zu binden und diese zu röhrenförmigen Gebilden zu verformen, war bisher nicht bekannt.

Die aktive Form der molekularen EHD-Maschine, wie sie im Kontakt mit der Membran vorkommt, beschreiben Daumke und sein Doktorand Arthur Alves de Melo zusammen mit internationalen Kollegen in der aktuellen Ausgabe der Fachzeitschrift PNAS. Der Vergleich der aktiven mit der inaktiven Proteinstruktur ergab, dass die EHD-Moleküle beim Binden an die Membran aufklappen. Dabei legen sie Regionen frei, die die es ihnen erlauben, sich zu ausgedehnten Ketten und Ringen zusammenzulagern. Ein weiterer spezialisierter Bereich dreht sich dabei so, dass er direkt mit der Membran Kontakt aufnehmen kann und die Proteine dort verankert.

Damit hat Daumkes Team zwei Schritte in der Arbeitsweise von EHD beschrieben. „Um den kompletten Arbeitszyklus und damit die Funktionsweise der molekularen EHD-Maschinen zu verstehen, müssen wir noch verschiedene andere Zustände analysieren“, sagt er. „Das ist eine Aufgabe für die nächsten Jahre.“

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Polyethersulfone Ultrafilter

Polyethersulfone Ultrafilter von Sartorius

Zuverlässige Filtration mit PESU-Membranen

Perfekt für Biotechnologie und Pharma, widersteht Sterilisation und hohen Temperaturen

Membranfilter
Hydrosart® Microfilter

Hydrosart® Microfilter von Sartorius

Hydrophile Mikrofilter für Bioprozesse

Minimale Proteinadsorption und hohe Durchflussraten

Mikrofilter
Sartobind® Rapid A

Sartobind® Rapid A von Sartorius

Effiziente Chromatographie mit Einweg-Membranen

Steigern Sie die Produktivität und senken Sie Kosten mit schnellen Zykluszeiten

Membranen
Sartopore® Platinum

Sartopore® Platinum von Sartorius

Effiziente Filtration mit minimaler Proteinadsorption

Reduziert Spülvolumen um 95 % und bietet 1 m² Filtrationsfläche pro 10"

Filtermembranen
Hydrosart® Ultrafilter

Hydrosart® Ultrafilter von Sartorius

Effiziente Ultrafiltration für Biotech und Pharma

Maximale Durchflussraten und minimaler Proteinverlust mit Hydrosart®-Membranen

Ultrafiltrationsmembranen
Polyethersulfone Microfilter

Polyethersulfone Microfilter von Sartorius

Biotechnologische Filtration leicht gemacht

Hochstabile 0,1 µm PESU-Membranen für maximale Effizienz

Mikrofilter
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...