25 Prozent der Proteinschalter arbeiten nach der inneren Uhr der Zelle

Mit Massenspektrometrie das komplexe Netzwerk der Proteinschalter entschlüsseln

16.01.2017 - Deutschland

Zirkadian ist die lateinische Bezeichnung für „ungefähr ein Tag“. Der zirkadiane Rhythmus hat sich entwickelt, damit sich unser Leben an die täglichen Umweltveränderungen anpassen kann: am Tag ist es hell und wärmer und nachts ist es dunkel und kühler. Wissenschaftler vom Max-Planck-Institut für Biochemie in Martinsried haben jetzt mithilfe der Massenspektrometrie gezeigt, dass diesem Rhythmus mehr als 25 Prozent der molekularen Proteinschalter in Mausleberzellen folgen. Diese rhythmischen Schalter sind Bindungsstellen für Phosphatmoleküle, welche die Funktion der Proteine, und somit alle täglichen Stoffwechselvorgänge in den Zellen regulieren und ausüben.

Illustration: Max Iglesias © MPI für Biochemie

25 Prozent der molekularen Proteinschalter sind im Rhythmus der inneren Uhr einer Zelle aktiv. Dies konnte jetzt mithilfe der Massenspektrometrie an Leberzellen von Mäusen gezeigt werden.

Matthias Mann, Leiter der Abteilung „Proteomics und Signaltransduktion“ am Max-Planck-Institut für Biochemie hat zusammen mit seiner Arbeitsgruppe in den letzten Jahren die Massenspektrometrie für die klinische Anwendung optimiert. Damit können die Gesamtheit der Proteine in Zellen und Geweben qualitativ und quantitativ untersucht werden. Zusätzlich können mit der Massenspektrometrie die sogenannten Phosphorylierungsstellen an Proteinen bestimmt werden. Hier können Phosphatmoleküle binden und die Struktur des Proteins leicht verändern. Dabei funktionieren die Phosphatmoleküle wie kleine Protein-Schalter, welche die Aktivität und Funktion der Proteine ändern.

Diese Methode nutzten die Forscher nun um die Frage zu klären, ob diese Phosphatschalter durch die „Innere Uhr“, dem sogenannten zirkadianen Rhythmus der Zelle gelenkt werden. Charo Robles, Leiterin der Studie erklärt: „Die zirkadiane Uhr ist ein innerer Taktgeber der Zellen. Die Rotation der Erde führt zu sich periodisch ändernden Umweltbedingungen, wie dem Tag-Nacht-Rhythmus, der Einfluss auf lebende Organismen hat. Die „innere Uhr“ erlaubt der Zelle, die permanenten Änderungen der Umwelt vorherzusehen, damit sie sich anpassen kann, um so die täglichen Stoffwechselprozesse zu regulieren.“

In der Vergangenheit wurde schon herausgefunden, dass das ein großer Teil des Transkriptoms, also eine große Menge der Boten-RNA, die den Bauplan der Proteine enthält und ein Teil des Proteoms, eine große Menge der Proteine, dem zirkadianen Rhythmus unterliegen. In dieser Studie wurde jetzt das Phosphoproteom untersucht, die Phosphatbindungsstellen an den Proteinen, in Leberzellen von Mäusen.

„Während ungefähr 10 Prozent der Boten-RNA und Proteine vom zirkadianen Rhythmus abhängen, konnten wir jetzt zeigen, dass 25 Prozent der Protein-Schalter, also Phosphorylierungen, im Verlaufe eines Tages-Nacht-Zyklus spezifisch in Leberzellen von Mäusen an- oder abgeschaltet sind“, sagt Robles. „Dies ist vergleichbar mit dem Alltag beim Menschen: Morgens im Büro wird der Computer an und abends zum Feierabend wieder ausgeschaltet. Wieder zu Hause wird dann zum Beispiel der Fernseher angeschaltet.“ Mit der Massenspektrometrie kann jetzt das komplexe Netzwerk der Proteinschalter entschlüsselt werden. „Wir analysieren nicht nur einen Schalter sondern sehen, wann in einer ganzen Stadt, welche Schalter betätigt werden.“ Die Forscher konnten zeigen, dass mehr als 20.000 Phosphorylierungs-Stellen dem Tag-Nacht-Rhythmus unterliegen. Einige Schalter wurden erst jetzt durch die Studie identifiziert.

Mit diesem Wissen, wann bestimmte Proteine aktiv sind, könnte die sogenannte „Chronotherapie“ vorangetrieben werden. Bestimmte zelluläre Prozesse oder ganze Organe sind im Verlaufe eines Tages mehr oder weniger aktiv. Dies hat Einfluss auf die Wirksamkeit und Verträglichkeit von Medikamenten. „Wenn wir wissen, wann bei einem individuellen Patienten bestimmte Signalwege aktiv sind, können wir die Behandlung von Krankheiten optimieren, indem wir zur rechten Zeit ein Medikament geben“, schaut Robles in die Zukunft.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Massenspektrometrie

Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!

3 Produkte
3 Broschüren
Themenwelt anzeigen
Themenwelt Massenspektrometrie

Themenwelt Massenspektrometrie

Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!

3 Produkte
3 Broschüren