Salmonellen unter die Lupe genommen

Grundlagenforschung beleuchtet Aspekte von Salmonellen für eine mögliche klinische Anwendung

16.09.2016 - Deutschland

Bakterien der Gattung Salmonella können über verdorbene oder verunreinigte Nahrungsmittel in den menschlichen Körper gelangen und schwere Durchfallerkrankungen auslösen. Allerdings besitzen Salmonellen auch eine hilfreiche Eigenschaft: Sie können Tumore besiedeln, die dadurch für das Immunsystem sichtbar und von ihm bekämpft werden. Das Problem: Die Salmonellen-Infektion kann bei  Krebspatienten zum Tod führen. Für einen möglichen therapeutischen Einsatz der Bakterien suchen Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig nach Wegen, die Bakterien unschädlich zu machen und sie gleichzeitig dazu zu bringen, im Tumorgewebe Anti-Krebswirkstoffe freizusetzen. Untersuchungen an verschiedenen Ansatzpunkten der Salmonellen haben die Wissenschaftler nun einen Schritt weitergebracht.

HZI/Manfred Rohde

Salmonellen im abgestorbenen Tumorgewebe

Die Wissenschaftler am HZI versuchen, Salmonellen so zu präparieren, dass sie für den Körper ungefährlicher sind und gleichzeitig eine starke Reaktion des Immunsystems auslösen. So könnte die körpereigene Abwehr sowohl den Tumor als auch die Salmonellen beseitigen.

"Der Effekt der Bakterien reicht allerdings nicht für jeden Tumor aus", sagt Prof. Siegfried Weiß, der am HZI die Abteilung Molekulare Immunologie leitet. "Daher ist es unser Ziel, die Salmonellen zusätzlich als Transporter für Toxine gegen Tumore zu nutzen." Dabei sollen die Bakterien, wenn sie einen Tumor besiedelt haben, einen Anti-Krebswirkstoff freisetzen. Der erste Schritt der Wissenschaftler ist es, die Salmonellen für den menschlichen Körper sicher zu machen. Eine gängige genetische Veränderung bei Salmonella ist eine Mutation in dem Gen namens aroA. Durch die Mutation können die Bakterien bestimmte Aminosäuren nicht mehr bilden und sind stark geschwächt. Bereits seit mehreren Jahrzehnten kommen diese geschwächten Bakterien als Lebendimpfstoff gegen Salmonellen-Infektionen zum Einsatz.

Das Forschungsteam um Siegfried Weiß hat nun getestet, ob die aroA-Mutation die eingesetzten Stämme von Salmonella enterica für die Bekämpfung von Krebs weiter optimieren würde. Das Ergebnis: „Die Bakterien sind durch die Mutation noch virulenter, also noch gefährlicher geworden und haben auch eine stärkere Immunreaktion ausgelöst.“ Sebastian Felgner, Doktorand bei Weiß, hat die Auswirkungen der Mutation in aroA auf molekularer Ebene untersucht und dabei herausgefunden, dass die Veränderung dieses einen Gens über 500 weitere Gene beeinflusst. "Das zeigt, wie schwierig es ist, therapeutische Bakterienstämme zu entwickeln – ob nun für Impfungen oder für die Krebsbekämpfung", sagt Weiß. "Es lässt sich nicht vorhersagen, was selbst kleine Veränderungen bewirken können." Die aroA-Mutante sei grundsätzlich für die Krebstherapie geeignet, da sie Tumore für das Immunsystem gut sichtbar als Fremdkörper markiert, nur müsse sichergestellt sein, dass das Immunsystem sowohl mit den Bakterien als auch dem Tumor fertig werde.

Die HZI-Wissenschaftler testen nun verschiedene Salmonellen-Stämme und suchen nach Eigenschaften, über die sie die Angriffslust der Bakterien drosseln können. Ein möglicher Ansatzpunkt ist das Flagellum – eine rotierende Geißel, mit der sich Salmonellen fortbewegen können. Das Besondere daran: Salmonellen bilden nur Flagellen aus, wenn sie sie auch wirklich brauchen, etwa um eine Nährstoffquelle zu erreichen. "Auch in der initialen Infektionsphase bilden Salmonellen Flagellen aus, um zu den Zellen der Darmwand zu gelangen, in die sie dann eindringen", sagt Dr. Marc Erhardt, Leiter der HZI-Nachwuchsgruppe Infektionsbiologie von Salmonellen. "Danach wird die Produktion von Flagellen wieder gedrosselt, weil sonst das Immunsystem auf die Bakterien aufmerksam werden könnte."

Wie genau dieser Auf- und Abbau der Flagellen reguliert ist, hat das Forschungsteam um Marc Erhardt nun an Salmonella enterica entschlüsselt. Insgesamt sind zehntausende Proteine für die Produktion eines Flagellums nötig. "Weil die Bakterien extrem viel Energie für den Aufbau aufwenden müssen, ist die Entscheidung über die Flagellenbildung eine sehr wichtige", sagt Erhardt. Mit einer Vielzahl von Rezeptoren, sogenannten Zweikomponentensystemen, vermessen die Salmonellen permanent die Bedingungen ihrer Umgebung, etwa den pH-Wert oder die Salzkonzentration, um festzustellen, wo sie sich genau befinden und ob sie Flagellen bilden müssen oder nicht. "Diese Umweltsignale wirken über ein komplexes Rückkopplungssystem auf die Produktion eines Regulatorkomplexes, der wiederum die Flagellenbildung anwerfen kann", erklärt Erhardt.

Die zugehörigen Gene für den Regulatorkomplex tragen die Bezeichnung flhDC und werden normalerweise durch ein Zusammenspiel zweier Faktoren – RflM und RcsB – gehemmt. Legen die Messwerte der Rezeptoren die Ausbildung eines Flagellums nahe, wird die Wechselwirkung dieser beiden Faktoren gestört, das Regulatorgen freigegeben und letztendlich die Maschinerie zum Flagellenaufbau angeworfen. Mithilfe modernster Mikroskopiemethoden können die Wissenschaftler den Flagellenaufbau jetzt sogar auf molekularer Ebene beobachten: Eine neue, hochauflösende Fluoreszenzmikroskopie macht einzelne Proteine und Proteinkomplexe in lebenden Zellen sichtbar und hat dabei eine zehnmal höhere Auflösung als die herkömmliche Lichtmikroskopie. In Kooperation mit Forschern der Universität Osnabrück haben Marc Erhardt und sein Team verschiedene Flagellenproteine und auch die Chemorezeptoren von Salmonella enterica mit einem Enzym markiert, das unter bestimmten Bedingungen eine Fluoreszenz erzeugt. So gelang es, die Dynamik des Flagellenaufbaus unter dem Mikroskop genau zu verfolgen und auch die Lage der Chemorezeptoren in den Bakterienzellen zu bestimmen.

Der große Aufwand, den Salmonellen zum Flagellenaufbau betreiben müssen, ist gleichzeitig ein möglicher Angriffspunkt für die Wissenschaftler: "Wenn es uns gelänge, die Ausbildung oder die Funktion von Flagellen zu hemmen, wären die Bakterien weniger virulent", sagt Marc Erhardt. "Das würde sie weniger gefährlich für den Körper machen, das Immunsystem hätte also leichtes Spiel mit ihnen." Für einen therapeutischen Einsatz von Salmonellen gegen Krebs müssen die Forscher all die untersuchten Aspekte so kombinieren, dass die Bakterien Tumore finden und besiedeln, dabei dem Körper nicht schaden und trotzdem eine ausreichend starke Immunreaktion auslösen. Langfristig möchten die Forscher die Salmonellen dazu bringen, im Tumor zusätzlich Substanzen freizusetzen, die das Krebsgewebe schwächen und es für das Immunsystem leichter abbaubar machen. "Da das HZI mit seinen vielfältigen Forschungsgruppen eine breite Expertise in vielen Bereichen der Bakterienforschung besitzt, können wir parallel ein großes Spektrum an Analysen durchführen", sagt Siegfried Weiß. "Bis zum klinischen Einsatz von Salmonellen ist es allerdings noch ein weiter Weg."

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

5 Produkte
1 White Paper
5 Broschüren
Themenwelt anzeigen
Themenwelt Fluoreszenzmikroskopie

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

5 Produkte
1 White Paper
5 Broschüren