Auf dem Weg zum künstlichen Muskel
Hierarchische Selbstorganisation supramolekularer muskelartiger Fasern
Unser Muskelgewebe ist hierarchisch aufgebaut: Die kleinste funktionelle Einheit der Muskelfasern sind sogenannte Sarkomere. Diese sind aus dem Aktin-Filament und dem Myosin-Filament zusammengesetzt. Das Myosin ist ähnlich gebaut wie ein Bündel winziger Golfschläger, deren „Köpfe“ in die dünneren Aktin-Filamente hineinragen. Eine koordinierte Bewegung Tausender dieser Köpfchen sorgt dafür, dass die Myosin-Fasern entlang der Aktin-Filamente gleiten – das Sarkomer kontrahiert. Eine Vielzahl solcher Sarkomer-Einheiten ist longitudinal zu Myofibrillen verbunden, die wiederum lateral zu Fasern gebündelt vorliegen.
Das Team von der Universität Straßburg und der Universität Paris Diderot um Nicolas Giuseppone hat dieses Bauprinzip jetzt nachgeahmt. Als Baueinheiten dienen Rotaxane, bewegliche Molekülsysteme aus einem stabförmigen Molekül, auf das ein großer molekularer Ring „aufgefädelt“ ist. Aus Rotaxanen lassen sich Dimere bilden, wenn ein Ring fest an ein Ende des Stabes gebunden ist. Innerhalb des Dimers ist dann jeweils der Ring des einen Moleküls auf den Stab des anderen aufgefädelt. Solche Systeme wurden bereits als Basis für molekulare Schalter verwendet, denn durch eine Verschiebung der Ringe gegeneinander auf den Achsen sind sie zu teleskopartigen Kontraktionen und Extensionen in der Lage.
Die Forscher konstruierten ihre Rotaxan-Dimere so, dass es für die Ringe jeweils zwei „Einrastpositionen“ auf den Achsen gibt, in denen sie über Anziehungskräfte zu bestimmten Atomgruppen der Achse fixiert werden können. Durch einen Wechsel zwischen saurem und basischem Milieu kann kontrolliert zwischen den beiden Positionen hin und her geschaltet – und damit die Länge des Dimers variiert werden. Erstmals gelang es den Wissenschaftlern nun, Tausende dieser Dimere zu einigen Mikrometer langen supramolekularen Fasern zu verknüpfen. Dazu verwendeten sie Verbindungsstücke, die jeweils an spezielle Bindestellen an den Enden der Dimere haften – über mehrfache Wasserstoff-Brückenbindungen analog der Basenpaarung in der DNA-Doppelhelix. Die Verbindungsstücke ziehen sich zudem untereinander an (über π–π Stapelung und van der Waals-Kräfte) und sorgen so dafür, dass die einzelnen Fasern zu 10 bis 20 nm dicken Faserbündeln aggregieren. Elektronenmikroskopische Aufnahmen zeigen, dass sich diese im kontrahierten Zustand wie ein angespannter Muskel verdicken und im gedehnten Zustand eine längliche Form einnehmen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.