Ein synthetisches Mini-Chromosom für Biotechnologie und Grundlagenforschung
Torsten Waldminghaus
Die Forschung an synVicII ist aus drei Gründen interessant: Erstens fanden die Wissenschaftler, dass sich synVicII in E. coli nach einem ähnlichen Modus verdoppelt wie das zweite Chromosom in V. cholerae; synVicII könnte also auch dazu beitragen, mehr über die Biologie dieses gefährlichen Krankheitserregers herauszufinden. Zweitens haben solch sekundäre synthetische Chromosomen großes Potenzial für die Biotechnologie. Mit ihnen könnten nämlich deutlich größere Mengen an Fremd-DNA in Zellen eingebracht werden als bisher – beispielsweise ganze Stoffwechselwege anstelle einiger weniger Gene. Und drittens wollen Waldminghaus und seine Mitarbeiter solch synthetische Chromosomen benutzen, um natürliche Chromosomen besser zu verstehen. Chromosomen tragen nämlich nicht nur die Erbinformationen ihrer Zelle, sondern auch Elemente, die ihren eigenen Erhalt sicherstellen. „Chromosomen müssen vor der Teilung einer Zelle kopiert, auf die Tochterzellen verteilt und gefaltet werden, weil sie um ein Vielfaches länger sind als die Zelle selbst“, erklärt Waldminghaus. Die Systeme, die diese Funktionen erfüllen, bestehen in der Regel aus einem DNA-bindenden Protein und einem entsprechenden Bindemotiv auf der DNA. In einem nächsten Schritt sollen nun synthetische Chromosomen mit derselben, aber auch mit anderer Verteilung dieser Motive gebaut und dadurch Zusammenhänge zwischen Verteilung und Funktion identifiziert werden.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.