Dem Medikament auf der Spur
Bochumer Forscher setzen erfolgreich Ramanmikroskopie ein
© LS Biophysik
© LS Biophysik
Per „Carrier“ zum Zielort
Um zu verstehen, wie ein Medikament wirkt, muss nicht nur der Wirkmechanismus verstanden werden, sondern auch die sogenannte Pharmakokinetik, also die Gesamtheit aller Prozesse, denen ein Arzneistoff im Körper unterliegt. Hierzu gehören der Transport zum Wirkort und sein eventueller biochemischer Umbau, der durch den Stoffwechsel bedingt wird. Das Medikament Erlotinib kann oral verabreicht werden und wird bei Lungenkrebs und Bauchspeicheldrüsenkrebs bereits erfolgreich eingesetzt. Damit Erlotinib an seinen Zielort gelangen kann, wird es in einen „Carrier“ gepackt, der es zu seinem Wirkort im Inneren der Krebszelle bringt. Dort kann das Erlotinib ganz gezielt ein bestimmtes Protein binden, das für das Zellwachstum zuständig ist. Diese Bindung kann das aus den Fugen geratene Wachstumssignal innerhalb der Krebszelle gezielt stoppen. Molekulare Therapien, bei denen passgenaue Moleküle gezielt Wachstumssignale der Krebszellen ausschalten, sind für den Patienten meist erheblich nebenwirkungsärmer als die klassische Chemotherapie, da die Wirkung genau an der Stelle der Fehlfunktion eintritt.
Auflösung im Nanometerbereich
Es gibt verschiedene etablierte Methoden, um die Verteilung eines Medikamentes zu untersuchen. Allerdings haben diese Methoden meist eine sehr geringe Ortsauflösung. Es kann nicht erkannt werden, wo genau innerhalb einer Zelle das Molekül angreift. Ferner sind oft komplizierte und störende Markierungen des Moleküls nötig. Diese können die Wirkung beeinflussen oder sogar komplett ausschalten. Im Gegensatz zu den etablierten Methoden kann die konfokale Ramanmikroskopie mit hoher räumlicher Auflösung Moleküle direkt ohne jede Markierung ausfindig machen. Die Auflösung des Ramanmikroskopes liegt bei etwa 500 Nanometern. Das ist 100-mal dünner als ein menschliches Haar. So können nicht nur einzelne Krebszellen, sondern auch Komponenten im Inneren der Zelle unterschieden und somit der Wirkort genau bestimmt werden.
Präzise und nebenwirkungsarm
Das Besondere an der aktuellen Untersuchung ist, dass das Medikament nicht nur erfolgreich in der Zelle lokalisiert werden konnte. Das Raman-Spektrum zeigte auch, dass das Medikament von der Zelle verändert wurde. So ist der Wirkstoff nicht nur von seinem „Carrier“ getrennt worden. Darüber hinaus ist auch noch eine kleine Untereinheit des Wirkstoffes in der Zelle durch andere Proteine der Krebszelle abgespalten worden. „Diese Arbeit zeigt das große Potenzial der Ramanmikroskopie für die Untersuchung von Wirkmechanismen“, so Prof. Klaus Gerwert. Damit können Wirkstoffe noch präziser an die Aufgaben in der Zelle angepasst werden und sind damit mit weniger Nebenwirkungen belastet.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.