Appetitzügler für Fresszellen

Grippeerkrankung bremst Teile des Immunsystems und begünstigt bakterielle Infektionen

16.11.2012 - Deutschland

Nach einer Grippeinfektion haben Bakterien im Körper leichtes Spiel: Das Grippe-Virus verändert das Immunsystem, so dass es bakterielle Infektionen schlechter bekämpfen kann. Ein Wissenschaftler-Team von Immunologen des Helmholtz-Zentrums für Infektionsforschung (HZI) hat gemeinsam mit Kooperationspartnern herausgefunden, dass ein Molekül des Immunsystems, genannt TLR7, dafür mitverantwortlich ist. Es erkennt Virus-Gene - und signalisiert zugleich den Fresszellen des Immunsystems, weniger Bakterien aufzunehmen. Diese Ergebnisse publizierten die Forscher im Journal of Innate Immunity.

Die Grippe tritt nicht nur im Winter verstärkt auf. Es gab in der Vergangenheit mehrfach Grippepandemien, die Millionen Menschen das Leben kosteten. Mittlerweile weiß man, dass viele Menschen im Zuge der Krankheit nicht nur von den Grippe-Viren, sondern zusätzlich von bakteriellen Erregern befallen werden, etwa den gefürchteten Pneumokokken, die Lungenentzündungen verursachen können. Diese sogenannten „Superinfektionen“ sorgen vielfach für schwere Krankheitsverläufe. Bei der Spanischen Grippe 1918-1920 waren sie sogar für die Mehrheit der Todesfälle verantwortlich. Warum eine Infektion mit dem Grippevirus das Risiko für Superinfektionen erhöht, ist bis heute nicht vollständig verstanden. Wissenschaftler des HZI, des Universitätsklinikums der Otto-von-Guericke-Universität Magdeburg, des Universitätsklinikums Essen und des Karolinska-Instituts in Stockholm, Schweden, sowie weiterer Einrichtungen haben untersucht, wie das Virus das Immunsystem manipuliert.

Besonderes Augenmerk legten sie auf das Molekül TLR7. Es befindet sich in verschiedenen Zellen des Körpers und erkennt das Erbmaterial von Viren. Daneben hat es, wie sich herausstellte, einen unerwünschten Nebeneffekt: Es schwächt im Zusammenhang mit Grippeinfektionen offenbar die Bekämpfung von Bakterien durch die körpereigene Abwehr und erhöht damit das Risiko einer Superinfektion. Das fanden die Forscher heraus, als sie untersuchten, wie Mäuse mit einer Superinfektion mit dem Bakterium Streptococcus pneumoniae, dem Erreger der Lungenentzündung, umgingen. Die Wissenschaftler markierten die Bakterien farbig und maßen, wie viele von ihnen von den Fresszellen des Immunsystems, den Makrophagen, aufgenommen wurden. Wenn Mäusen während der Grippeinfektion der Virus-Sensor TLR7 fehlte, hatten die Makrophagen mehr Appetit und eliminierten eine größere Zahl von Bakterien als in Mäusen mit dem intakten Sensor. „Ohne TLR7 dauert es länger, bis die Mäuse den kritischen Punkt erreichen, an dem sie mit der Bakterieninfektion nicht mehr zurecht kommen“, interpretiert Prof. Dunja Bruder, Leiterin der Arbeitsgruppe „Immunregulation“ am HZI und Professorin für Infektionsimmunologie am Universitätsklinikum Magdeburg, die Funktion von TLR7.

Die Wissenschaftler haben auch eine Vermutung, wie TLR7 den Appetit der Fresszellen steuern könnte: Wenn das Immunsystem Viren erkennt, bringt es andere Immunzellen dazu, einen Signalstoff namens IFN gamma zu produzieren. Man weiß bereits, dass dieser die Makrophagen in der Lunge hemmt, die dann weniger Bakterien beseitigen. Einen weiteren Hinweis auf diesen Zusammenhang entdeckten die Forscher in ihrer Studie: Bei Tieren ohne TLR7 fanden sie geringere Mengen des Botenstoffs IFN gamma. Die Folge könnte sein, dass die Makrophagen deshalb mehr Appetit haben und die Bakterien aus diesem Grund erst später in die Blutbahn streuen.

„Unsere Ergebnisse bestätigen, dass das Grippevirus langfristig die Abwehr von Bakterien unterdrückt. Dies ist vermutlich eine ungewollte Nebenwirkung der Virusinfektion“, spekuliert Dr. Stegemann-Koniszewski, Erstautorin der Studie.

„Leider ist es schwierig, hier therapeutisch einzugreifen. Auf den ersten Blick erscheint es naheliegend, bei Grippe TLR7 zu hemmen, so dass die Makrophagen ungebremst Bakterien beseitigen können. Das könnte allerdings ungeahnte Folgen haben, da TLR7 und IFN gamma Teile eines eng regulierten immunologischen Netzwerks sind“, beschreibt Prof. Matthias Gunzer, ehemaliger Arbeitsgruppenleiter am HZI und heute Professor am Universitätsklinikum Essen, die Herausforderung, die Erkenntnisse therapeutisch umzusetzen.

Auch wenn das Fehlen von TLR7 die Bakterieninfektion nicht verhindert: Eine mögliche medizinische Anwendung bietet für die Zukunft dennoch vielversprechende Optionen. „Ohne TLR7 dauert es länger, bis sich die Bakterien im Blut ausbreiten“, erklärt Bruder. „ Auch wenn es sich nur um eine relativ kurze Zeitspanne handelt, könnte dieses Zeitfenster für einen schwerkranken Patienten unter Umständen entscheidend sein. Denn je mehr Zeit die Ärzte haben, die richtigen Antibiotika auszuwählen, desto besser sind die Chancen für eine erfolgreiche Behandlung.“

Originalveröffentlichung

Sabine Stegemann-Koniszewski, Marcus Gereke, Sofia Orrskog, Stefan Lienenklaus, Bastian Pasche, et al.; "TLR7 contributes to the rapid progression but not to the overall fatal outcome of secondary pneumococcal disease following influenza A virus infection."; Journal of Innate Immunity 2012.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!