Pflanzenschädling entstand durch Verschmelzung zweier Arten

Eine im Iran heimische Pilzart, die Gräser befällt, ist das Ergebnis einer natürlichen Hybridbildung, die erst wenige hundert Jahre zurückliegt

03.07.2012 - Deutschland

Zymoseptoria tritici bereitet europäischen Landwirten regelmäßig Kopfschmerzen: Der aus dem Mittleren Osten stammende Schlauchpilz befällt die Blätter von Weizenpflanzen und löst die sogenannte Blattdürre aus. Die Folge können schwere Ernteeinbußen von bis zu 50 Prozent sein. Wissenschaftler des Max-Planck-Instituts für terrestrische Mikrobiologie in Marburg und der Aarhus Universität in Dänemark haben nun das Genom eines nahe Verwandten unter die Lupe genommen – Zymoseptoria pseudotritici – und sind dabei auf Erstaunliches gestoßen. Der Pilz, der anders als sein weltweit aktiver Vetter bevorzugt Gräser im Iran angreift, ist offenbar erst vor einigen hundert Jahren durch die Fusion zweier unbekannter Elternarten entstanden. Die Ergebnisse der Forscher machen deutlich, dass durch natürliche Hybridbildung innerhalb kürzester Zeit völlig neue und erfolgreiche Schädlingsarten entstehen können.

© Janine Haueisen

Zwei Stämme der Pilzart Zymoseptoria pseudotritici, die nebeneinander in einer Kulturschale wachsen. Der Pilz ist aus der Hybridisierung zweier Elternarten entstanden.

© MPI f. terrestrische Mikrobiologie

Die Chromosomen von Zymoseptoria pseudotritici. Sie weisen eine mosaikähnliche Struktur aus variablen und konstanten Abschnitten auf. In den variablen Abschnitten unterscheiden sich die Individuen, dort können die Erbinformation beider Elternarten vorkommen. Die konstanten Regionen enthalten dagegen bei allen Individuen immer nur die Version eines der beiden Elternarten.

© Janine Haueisen
© MPI f. terrestrische Mikrobiologie

Zeugen zwei verschiedene Arten erfolgreich Nachkommen, werden diese als Hybride bezeichnet. Während die Hybridbildung in freier Wildbahn unter Tieren eher eine Ausnahmeerscheinung von kurzer Dauer ist – vor allem weil die Nachkommen häufig weniger fit oder gar unfruchtbar sind – gehört die Artbildung durch Kreuzung bei Pflanzen und Pilzen sozusagen zum evolutionären Alltag. Was sich dabei aber auf der Ebene der Gene abspielt, war bislang kaum bekannt: Bei natürlich vorkommenden Hybridarten liegt die initiale Vermischung der Genome meist so weit zurück, dass sich im Erbgut kaum noch Spuren finden.

Das Team um Eva Holtgrewe Stukenbrock vom Max-Planck-Institut für terrestrische Mikrobiologie hat nun erstmals das Genom einer sehr jungen hybriden Population untersucht, bei der die Hybridisierung im evolutionären Maßstab gerade erst stattgefunden hat. Die Forscher haben das Erbgut von fünf Individuen der aus dem Iran stammenden Pilzart Zymoseptoria pseudotritici entschlüsselt und miteinander verglichen. „Dabei sind wir auf ein ungewöhnliches Diversitätsmuster gestoßen“, sagt Eva Stukenbrock. „Im Erbgut fanden wir viele lange Abschnitte, die bei allen Individuen identisch waren. Dazwischen befanden sich aber regelmäßig Segmente mit hoher Variabilität.“

Diese variablen Bereiche ließen sich immer zwei verschiedenen sogenannten Haplogruppen zuordnen – ein Individuum wies entweder den einen oder den anderen Typ auf. Den Forschern war schnell klar: Das sind die Spuren einer natürlichen Hybridisierung in der Vergangenheit. In den variablen Genabschnitten hat sich offensichtlich bis heute das Erbgut beider „Elternarten“ innerhalb der Population erhalten, während in den identischen Bereichen jeweils nur die Erbinformation eines einzigen Elternteils übrig geblieben ist.

Doch damit nicht genug. Anhand der räumlichen Struktur der identischen und variablen Abschnitte, dem Grad der Ähnlichkeit sowie weiteren Eigenschaften der Erbinformationen konnten die Wissenschaftler die ganze Evolutionsgeschichte der jungen Pilzart rekonstruieren. „Die gesamte heutige Population stammt von zwei einzelnen Elternindividuen aus verschiedenen Arten ab, die sich nur einmal gekreuzt haben. Es hat definitiv keine Rückkreuzung zwischen den Elternarten und den Hybdriden gegeben“, erklärt Eva Stukenbrock. „Darüberhinaus können wir sagen, dass die Hybridbildung etwa 380 Generationen zurückliegt. Bei einer für diese Pilze typischen Vermehrungsrate von mindestens einem Mal bis etwa drei Mal pro Jahr, hat die Artbildung also vor etwa 200 Jahren stattgefunden.“

Unklar ist allerdings die Identität der beiden Stammeltern. „In unserer Probensammlung aus dem Iran konnten wir keine passenden Arten identifizieren. Das kann entweder schlicht und einfach daran liegen, dass unsere Proben nicht das ganze Spektrum der Schädlingsvielfalt abbilden, oder daran, dass die hybriden Nachkommen die Elternarten verdrängt haben“, sagt die Wissenschaftlerin. Und das scheint gar nicht so unwahrscheinlich zu sein: Gerade bei Pflanzen und Pilzen haben neu entstandene „Mischlinge“ oftmals neue Eigenschaften, die eine Besiedlung anderer Lebensräume möglich machen – oder sogar Konkurrenzvorteile gegenüber bereits etablierten Arten bieten.

Die Studie der Marburger zeigt, dass sich durch Hybridbildung neue und auch für die Landwirtschaft bedeutsame Pilze äußerst schnell entwickeln und erfolgreich ausbreiten können. „Diese rapide Evolution von Pflanzenschädlingen wird durch den Welthandel mit landwirtschaftlichen Produkten gefördert“, sagt Eva Stukenbrock, „und zwar ganz einfach indem lokale Pilzarten, die zum Beispiel auf dem Weizen leben, mit eingeführten Spezies ungewollt zusammengebracht werden, die sich dann kreuzen können und neue Arten bilden.“

Originalveröffentlichung

Eva Holtgrewe Stukenbrock et al.; Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. PNAS Early Edition 18.09.2012

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?