Künstliche Zellen: Ionenaustausch führt zu komplexen Zellsystemen mit anorganischen Membranen
Normalerweise werden die Membranen künstlicher Kompartimente aus hochmolekularen Polymeren durch Aggregation auf einer Oberfläche hergestellt. Die Membranen der iCHELLS entstehen dagegen aus niedermolekularen Bausteinen an der Berührungsstelle zweier wässriger Lösungen. Dazu injiziert man einfach eine wässrige Lösung in eine zweite. Lösung 1 enthält Polyoxometallat-Cluster, winzige „Häufchen“ aus mehreren Übergangsmetall-, Sauerstoff- und manchmal weiteren Atomen. Die Forscher setzten z.B. ein Phosphowolframat ein, einen negativ geladenen Cluster, bei dem ein Phosphoratom von zwölf Wolfram- und 40 Sauerstoffatomen umgeben ist. Als Gegenionen dienen kleine positiv geladene Ionen, wie Protonen oder Natriumionen. Lösung 2 enthält eine Verbindung aus großen positiv geladenen organischen Ionen, z.B. aromatischen Ringsystemen, und kleinen negativ geladenen Gegenionen. Kommen die beiden Lösungen miteinander in Kontakt, betreiben die Ionenpaare sogleich einen Partnertausch: Während die beiden kleinen Partner in Lösung bleiben, tun sich die beiden großen Ionen zusammen und aggregieren zu einer dünnen Membran, da sie als Paar nicht mehr löslich sind. Eine membranumschlossene Zelle entsteht.
Über die Wahl der Ionen lassen sich nicht nur Dicke und Durchlässigkeit der Membran variieren, sie kann auch mit Funktionalitäten ausgestattet werden. So können Bausteine gewählt werden, die z.B. chemische Reaktionen katalysieren oder Zielmoleküle spezifisch erkennen. Mithilfe mikrofluidischer Systeme (Chips mit winzigen flüssigkeitsgefüllten Kanälchen) lassen sich die Zellen leicht in großen Mengen herstellen, was Voraussetzung für einen technischen Einsatz wäre. Zu den denkbaren Anwendungen zählen beispielsweise eingekapselte Katalysatoren: Die Membran könnte selektiv das Substrat durchlassen, das reagieren soll.
Auch komplexere Zellensysteme sind zugänglich: Einfach eine weitere Lösung eines geeigneten Ions in eine Zelle injizieren – und schon bildet sich eine „Zelle in der Zelle“. Solche Systeme könnten als „Gefäße“ für mehrstufige Reaktionen dienen. Das große Ziel ist aber die Herstellung künstlicher chemischer Zellen mit Eigenschaften, die denen lebender Systeme ähneln. Die Wissenschaftler erhoffen sich Hinweise, wie sich das Leben vor Milliarden Jahren aus einer „anorganischen Welt“ entwickeln konnte, und ob es möglich ist, iCHELLs als Plattform für die Entwicklung einer nicht-organischen „anorganischen Biologie“ im Labor zu verwenden.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Polyethersulfone Ultrafilter von Sartorius
Zuverlässige Filtration mit PESU-Membranen
Perfekt für Biotechnologie und Pharma, widersteht Sterilisation und hohen Temperaturen
Hydrosart® Microfilter von Sartorius
Hydrophile Mikrofilter für Bioprozesse
Minimale Proteinadsorption und hohe Durchflussraten
Sartobind® Rapid A von Sartorius
Effiziente Chromatographie mit Einweg-Membranen
Steigern Sie die Produktivität und senken Sie Kosten mit schnellen Zykluszeiten
Sartopore® Platinum von Sartorius
Effiziente Filtration mit minimaler Proteinadsorption
Reduziert Spülvolumen um 95 % und bietet 1 m² Filtrationsfläche pro 10"
Hydrosart® Ultrafilter von Sartorius
Effiziente Ultrafiltration für Biotech und Pharma
Maximale Durchflussraten und minimaler Proteinverlust mit Hydrosart®-Membranen
Polyethersulfone Microfilter von Sartorius
Biotechnologische Filtration leicht gemacht
Hochstabile 0,1 µm PESU-Membranen für maximale Effizienz
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.