Wirkstoffkandidaten im Blut testen: Neue Messmethode analysiert Interaktionen kleinster Biomoleküle
Die „Microscale Thermophoresis“ (MST) reagiert dabei sensitiv auf Größenänderungen sowie auf Veränderungen von Wasserhülle und Ladung der Moleküle. „Wir können die Wechselwirkung von Bindungspartnern in nahezu jeglichem Größenverhältnis analysieren“, sagt Braun. „Dazu gehören auch einzelne, an Proteine gebundene Ionen oder interagierende Small Molecules. Wenn wir zudem Fluoreszenzfarbstoffe als Marker einsetzen, kann die Untersuchung direkt in Blut und anderen komplexen Flüssigkeiten durchgeführt werden.“ Die Methode wurde in Zusammenarbeit mit NanoTemper Technologies entwickelt und vom Exzellenzcluster Nanosystems Initiative Munich (NIM) gefördert.
Die MST-Technologie beruht auf dem Grundprinzip der Thermophorese, also der gerichteten Bewegung von Teilchen entlang eines Temperaturgefälles. In diesem Fall erzeugt ein Infrarot-Laser einen mikroskopischen Temperaturgradienten, während die Änderung der Molekülkonzentration mit Hilfe von Fluoreszenzmikroskopie verfolgt und gemessen werden kann. Binden Moleküle aneinander, verändert das ihre thermophoretische Bewegung, sodass über die Messung auch die Stärke der Bindung ermittelt werden kann.
Die Thermophorese reagiert empfindlich auf verschiedene Eigenschaften von Biomolekülen, etwa Oberflächenparameter wie die Ladung oder auch Änderungen der umgebenden Wasserhülle, wie sie bei allen Bindungsreaktionen auftreten. Anders als bei herkömmlichen Methoden können so auch interagierende Moleküle mit sehr großen Massen- oder Größenunterschieden analysiert werden, ob nun bei einer Ionenbindung oder einer Interaktion von Small Molecules mit Proteinen. Insgesamt erlaubt die Methode einige Interaktionsanalysen, die bisher nicht möglich waren.
Ein weiterer Vorteil: Das Verfahren ist konkurrenzlos einfach in der Handhabung. Da die Analyse direkt in Lösung stattfindet, muss keiner der Bindungspartner immobilisiert werden - was eine mögliche Fehlerquelle umgeht und auch Zeit spart. Die Analyse des Bindungsverhaltens unter fast physiologischen Bedingungen liefert der Grundlagenforschung wie auch der medizinischen Forschung zudem Informationen für ein besseres Verständnis biologischer Prozesse - was bei der Entwicklung effizienter Wirkstoffe helfen könnte.
„Die MST-Technologie eröffnet vor allem im Größenbereich der Small Molecules neue Möglichkeiten für die Entwicklung von Medikamenten“, sagt Dr. Stefan Duhr, Geschäftsführer von NanoTemper. So kann die Methode etwa anzeigen, ob Bestandteile des Blutserums mit therapeutisch interessanten Substanzen interagieren - was deren Wirksamkeit beeinträchtigen könnte. „Diese Informationen können im Moment nur sehr aufwendig in klinischen Studien gewonnen werden“, so Duhr.
Originalveröffentlichung: Christoph J. Wienken, Philipp Baaske, Ulrich Rothbauer, Dieter Braun and Stefan Duhr; „Protein Binding Assays in Biological Liquids using Microscale Thermophoresis”; NatComm, online Publikation, 19. Oktober, 2010
Weitere News aus dem Ressort Forschung & Entwicklung
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.