Live-Schaltung zum schlagenden Herzen
Max-Planck-Wissenschaftler haben mit der Magnetresonanz-Tomografie Organe und Gelenke in Echtzeit "gefilmt"
Was noch bis in die 1980er-Jahre mehrere Minuten dauerte, geht heute innerhalb von Sekunden: die Aufnahme von Schnittbildern unseres Körpers mithilfe der Magnetresonanz-Tomografie (MRT). Möglich machte dies die FLASH (fast low angle shot)-Methode, die von den Göttinger Wissenschaftlern Jens Frahm und Axel Haase am Max-Planck-Institut für biophysikalische Chemie entwickelt wurde. Die FLASH-Technik revolutionierte die Magnetresonanz-Tomografie und machte sie zu einem diagnostischen Standard-Verfahren in der Medizin. Die MRT-Untersuchung ist für Patienten völlig schmerzfrei und zudem äußerst schonend. Da die Technik mit Magnetfeldern und Radiowellen arbeitet, sind die untersuchten Personen - anders als beim Röntgen - keiner Strahlenbelastung ausgesetzt. Doch für die Untersuchung schnell bewegter Organe und Gelenke ist das Verfahren derzeit immer noch zu langsam. Um beispielsweise Herzbewegungen zu verfolgen, müssen die Messungen mit dem Elektrokardiogramm (EKG) synchronisiert werden, während der Patient den Atem anhält. Anschließend werden die Daten aus unterschiedlichen Herzschlägen zu einem Film zusammengesetzt.
In Zukunft erweiterte Diagnostik bei Erkrankungen
Den Forschern um Jens Frahm, Leiter der gemeinnützigen Biomedizinischen NMR Forschungs GmbH, ist es jetzt gelungen, die Bildaufnahmetechnik ein weiteres Mal wesentlich zu beschleunigen. Das neue MRT-Verfahren von Jens Frahm, Martin Uecker und Shuo Zhang reduziert die Messzeit eines Bildes bis auf eine fünfzigstel Sekunde (20 Millisekunden) und erlaubt erstmals "Live-Mitschnitte" bewegter Gelenke und Organe ganz ohne Artefakte. Die Bewegung des Kiefergelenks lässt sich damit ebenso "filmen" wie das Sprechen oder die Herzbewegungen. "Ein Echtzeit-Film vom schlagenden Herzen erlaubt es, die Pumpbewegungen des Herzmuskels und den resultierenden Blutfluss direkt zu verfolgen - Herzschlag für Herzschlag und ohne, dass der Patient die Luft anhalten muss", erklärt Frahm. Mit diesem Verfahren könne die Diagnostik bei Erkrankungen wie Herzinfarkt oder Herzmuskelschwäche verbessert werden, so die Erwartung der Wissenschaftler. Als weiteres Einsatzgebiet sind minimal-invasive Eingriffe denkbar, die künftig unter MRT statt wie bisher unter Röntgen-Kontrolle erfolgen könnten. "Wir müssen aber wie bei FLASH erst lernen, die Echtzeit-MRT medizinisch zu nutzen", sagt Frahm. "Auch für die Ärzte ergeben sich neue Anforderungen und notwendige Erprobungsphasen. Die technischen Fortschritte müssen in Untersuchungsprotokolle ‚übersetzt’ werden, die die jeweiligen medizinischen Fragestellungen optimal beantworten."
Weniger ist mehr: Beschleunigung durch bessere Bildberechnung
Für den Durchbruch zu Messzeiten, die nur noch Bruchteile einer Sekunde betragen, mussten mehrere Entwicklungen erfolgreich miteinander verknüpft werden. So verwendeten die Wissenschaftler zwar erneut die FLASH-Technik, dieses Mal aber mit einer radialen Kodierung der Ortsinformation, welche die MRT-Aufnahmen gegenüber Bewegungen weitestgehend unempfindlich macht. Um die Messzeiten weiter zu verkürzen, war Mathematik gefragt. "Es werden erheblich weniger Daten aufgenommen als für die Berechnung eines Bildes normalerweise notwendig sind. Ein von uns neu entwickeltes mathematisches Verfahren macht es möglich, dass wir aus den eigentlich unvollständigen Daten ein aussagekräftiges Bild berechnen können", so Frahm. Im Extremfall lässt sich so aus nur fünf Prozent der Daten eines normalen MRT-Bildes ein vergleichbar gutes Bild berechnen - entsprechend einer 20-fach kürzeren Messzeit. Die Göttinger Wissenschaftler haben damit die MRT-Messzeit seit Mitte der 1980er-Jahre insgesamt um den Faktor 10000 beschleunigt.
Während die schnelle Messtechnik der Göttinger Forscher direkt mit heutigen MRT-Geräten realisiert werden kann, sind ausreichend schnelle Computer zur Bildberechnung derzeit noch ein Engpass. Der Physiker Martin Uecker erklärt: "Der Rechenaufwand ist gigantisch. Wenn wir das Herz für nur eine Minute in Echtzeit untersuchen, entstehen aus einer Datenmenge von zwei Gigabyte beispielsweise 2000 bis 3000 Bilder." Uecker hat das mathematische Verfahren daher so ausgelegt, dass es in parallel zu berechnende Schritte zerlegt wird. Diese aufwendigen Berechnungen erfolgen mit schnellen Grafikkarten, die ursprünglich für Computerspiele und dreidimensionale Visualisierungen entwickelt wurden. "Für eine Minute Film benötigt unser Rechnersystem derzeit rund 30 Minuten", so Uecker. Es wird daher einige Zeit dauern, bis die MRT-Geräte über ausreichend schnelle Rechner verfügen, die es erlauben, die Bilder direkt während der Untersuchung zu berechnen und live darzustellen. Um den Weg ihrer Innovation in die Praxis möglichst kurz zu halten, kooperieren die Göttinger Forscher eng mit der Firma Siemens Healthcare.
Originalveröffentlichung: Martin Uecker, Shuo Zhang, Dirk Voit, Alexander Karaus, Klaus-Dietmar Merboldt, Jens Frahm; "Real-time MRI at a resolution of 20 ms."; NMR in Biomedicine 2010, 23.
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Diagnostik
Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.
Themenwelt Diagnostik
Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.