Akustischer Antrieb für Nanomaschinen hängt von deren Orientierung ab
Nanoteilchen für biomedizinische Anwendungen im Körper einsetzbar
WWU – AG Wittkowski
Mikroskopisch kleine Nanomaschinen, die sich wie U-Boote mit eigenem Antrieb bewegen – beispielsweise im menschlichen Körper, wo sie Wirkstoffe transportieren und gezielt freisetzen: Was nach Science-Fiction klingt, ist in den vergangenen 20 Jahren zu einem immer schneller wachsenden Forschungsgebiet geworden. Die meisten bisher entwickelten Teilchen funktionieren jedoch nur im Labor. Der Antrieb zum Beispiel ist eine Hürde: Manche Teilchen müssen durch Licht mit Energie versorgt werden, andere nutzen chemische Antriebe, die giftige Substanzen freisetzen. Beides kommt für eine Anwendung im Körper nicht infrage. Eine Lösung für das Problem könnten akustisch angetriebene Teilchen sein. Johannes Voß und Prof. Dr. Raphael Wittkowski vom Institut für Theoretische Physik und Center for Soft Nanoscience der Westfälischen Wilhelms-Universität (WWU) Münster haben nun zentrale Fragen, die bislang einer Anwendung eines akustischen Antriebs im Wege standen, geklärt. Die Ergebnisse der theoretischen Arbeit sind in der Fachzeitschrift ACS Nano veröffentlicht.
Wandernde Ultraschallwellen sind für Antrieb geeignet
Bei akustisch angetriebenen Nanomaschinen wird Ultraschall eingesetzt, da dieser für Anwendungen im Körper ungefährlich ist. Erstautor Johannes Voß fasst die bisherige Forschung folgendermaßen zusammen: „Es gibt viele experimentelle Publikationen. Jedoch werden die Teilchen in den Experimenten bisher fast immer einer stehenden Ultraschallwelle ausgesetzt. Dies macht zwar die Experimente deutlich einfacher, aber gleichzeitig im Hinblick auf mögliche Anwendungen wenig aussagekräftig. Denn dort würde man wandernde Ultraschallwellen einsetzen.“ Zum Hintergrund: Stehende Wellen werden erzeugt, wenn sich gegenläufig wandernde Wellen überlagern.
Die Forschung berücksichtige außerdem bislang nicht, dass die Teilchen sich in Anwendungen in beliebige Richtungen bewegen können, klammerte also die Frage aus, ob der Antrieb von der Orientierung der Teilchen abhängt. Stattdessen nahm sie nur jene Teilchen ins Visier, die senkrecht zur Ultraschallwelle ausgerichtet sind. Das münstersche Forscherteam hat die Auswirkungen der Orientierung nun erstmals mit aufwändigen Computersimulationen untersucht.
Fazit: Der Antrieb der Nanoteilchen hängt von ihrer Orientierung ab. Gleichzeitig funktioniert der akustische Antriebsmechanismus bei wandernden Ultraschallwellen für alle Orientierungen der Teilchen, also nicht nur genau senkrecht zur Ultraschallwelle, so gut, dass diese Teilchen tatsächlich für biomedizinische Anwendungen einsetzbar sind. Als weiteren Aspekt haben die WWU-Physiker untersucht, welchen Antrieb die Teilchen aufweisen, wenn sie Ultraschall ausgesetzt sind, der aus allen Richtungen kommt („isotroper Ultraschall“). Auch diese Art von Ultraschall ist für manche potenziellen Anwendungen relevant.
Grundlage für Schritt zur Anwendung
„Unsere Ergebnisse haben gezeigt, wie die Teilchen sich in Anwendungen verhalten werden und dass der Antrieb die richtigen Eigenschaften hat, um die Teilchen tatsächlich in diesen Anwendungen einsetzen zu können“, fasst Johannes Voß zusammen. „Wir haben wichtige Eigenschaften akustisch angetriebener Nanoteilchen offengelegt, die bisher nicht untersucht worden waren, die man aber verstehen muss, um den Schritt von der Grundlagenforschung zu den geplanten Anwendungen der Teilchen zu ermöglichen“, ergänzt Raphael Wittkowski.
Das münstersche Duo untersuchte kegelförmige Teilchen, da diese sich schon bei geringer Ultraschallintensität schnell bewegen können, also einen effizienten Antrieb haben, und außerdem in großer Zahl leicht hergestellt werden können. Die Teilchen sind knapp einen Mikrometer groß, also knapp tausend Nanometer. Zum Vergleich: Ein rotes Blutkörperchen hat einen Durchmesser von etwa 7,7 Mikrometer. Die Nanoteilchen könnten sich also durch den Blutkreislauf bewegen, ohne die feinen Blutgefäße zu verstopfen. „Die Größe der Teilchen kann nach Bedarf der jeweils beabsichtigten Anwendung gewählt werden, ihr Antriebsmechanismus funktioniert auch bei kleineren und größeren Teilchen“, erläutert Johannes Voß. „Wir haben die Teilchen in Wasser simuliert, aber der Antrieb ist auch für andere Flüssigkeiten und für Gewebe geeignet.“
Mithilfe der Computersimulationen erforschte das Team Systeme und ihre Eigenschaften, die in den vielen vorausgegangenen experimentellen Arbeiten nicht untersucht werden konnten. Raphael Wittkowski gibt einen Ausblick: „Ein wichtiger Schritt für die Zukunft wäre, dass auch die auf Experimenten basierende Forschung dazu übergeht, sich mit diesen Systemen zu befassen.“